Find the coordinate of two line segments that are perpendicularcalculating perpendicular and angular distance between line segments in 3dPerpendicular line passing through the midpoint of another lineFind points on perpendicular lineAngle between two line segmentsFind two points on two lines in the plane where the line between the two points go through a third point and are equidistant from that pointModelling the difference between intersections of two lines on the circumference of a circleUsing vector math to get point on perpendicular line from a point with the same YFind the point of intersection between a line segment $AC$ and a perpendicular line going through a point $B$ not on $AC$How to find the coordinates of points on a line perpendicular to a given planeShortest distance between skew line *segments*

Do I have to worry about players making “bad” choices on level up?

A non-technological, repeating, visible object in the sky, holding its position in the sky for hours

Cannot populate data in lightning data table

Can solid acids and bases have pH values? If not, how are they classified as acids or bases?

Examples of non trivial equivalence relations , I mean equivalence relations without the expression " same ... as" in their definition?

Is thermodynamics only applicable to systems in equilibrium?

Are Boeing 737-800’s grounded?

Is it possible to Ready a spell to be cast just before the start of your next turn by having the trigger be an ally's attack?

When and why did journal article titles become descriptive, rather than creatively allusive?

Phrase for the opposite of "foolproof"

Confusion about capacitors

Find the coordinate of two line segments that are perpendicular

If Earth is tilted, why is Polaris always above the same spot?

What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?

Will tsunami waves travel forever if there was no land?

In gnome-terminal only 2 out of 3 zoom keys work

How to set the font color of quantity objects (Version 11.3 vs version 12)?

Why does nature favour the Laplacian?

Why is current rating for multicore cable lower than single core with the same cross section?

Please, smoke with good manners

How to stop co-workers from teasing me because I know Russian?

What word means to make something obsolete?

What is a Recurrent Neural Network?

Stark VS Thanos



Find the coordinate of two line segments that are perpendicular


calculating perpendicular and angular distance between line segments in 3dPerpendicular line passing through the midpoint of another lineFind points on perpendicular lineAngle between two line segmentsFind two points on two lines in the plane where the line between the two points go through a third point and are equidistant from that pointModelling the difference between intersections of two lines on the circumference of a circleUsing vector math to get point on perpendicular line from a point with the same YFind the point of intersection between a line segment $AC$ and a perpendicular line going through a point $B$ not on $AC$How to find the coordinates of points on a line perpendicular to a given planeShortest distance between skew line *segments*













1












$begingroup$


How can the x,y position (actually will need in 3d but for simplicity asking in 2d) of a point be found if it is the intersection of two perpendicular line segments.



I have two points, $p_1$ and $p_2$ that are known $x,y$ locations. I also have line segments with known lengths $a$ and $b$. I made a diagram below to illustrate the problem.



enter image description here










share|cite|improve this question









$endgroup$











  • $begingroup$
    If the lengths $a$ and $b$ are fixed, then you must also have $lVert p_1-p_2rVert^2=a^2+b^2$ for there to be any solution at all. It this condition is meth, then there can be up to four solutions, two if $p_1$ must be an endpoint of $a$ and $p_2$ must be an endpoint of $b$.
    $endgroup$
    – amd
    3 hours ago










  • $begingroup$
    @amd yes p1 and p2 are the endpoints of a and b. I need their mutual endpoint
    $endgroup$
    – user1938107
    2 hours ago















1












$begingroup$


How can the x,y position (actually will need in 3d but for simplicity asking in 2d) of a point be found if it is the intersection of two perpendicular line segments.



I have two points, $p_1$ and $p_2$ that are known $x,y$ locations. I also have line segments with known lengths $a$ and $b$. I made a diagram below to illustrate the problem.



enter image description here










share|cite|improve this question









$endgroup$











  • $begingroup$
    If the lengths $a$ and $b$ are fixed, then you must also have $lVert p_1-p_2rVert^2=a^2+b^2$ for there to be any solution at all. It this condition is meth, then there can be up to four solutions, two if $p_1$ must be an endpoint of $a$ and $p_2$ must be an endpoint of $b$.
    $endgroup$
    – amd
    3 hours ago










  • $begingroup$
    @amd yes p1 and p2 are the endpoints of a and b. I need their mutual endpoint
    $endgroup$
    – user1938107
    2 hours ago













1












1








1





$begingroup$


How can the x,y position (actually will need in 3d but for simplicity asking in 2d) of a point be found if it is the intersection of two perpendicular line segments.



I have two points, $p_1$ and $p_2$ that are known $x,y$ locations. I also have line segments with known lengths $a$ and $b$. I made a diagram below to illustrate the problem.



enter image description here










share|cite|improve this question









$endgroup$




How can the x,y position (actually will need in 3d but for simplicity asking in 2d) of a point be found if it is the intersection of two perpendicular line segments.



I have two points, $p_1$ and $p_2$ that are known $x,y$ locations. I also have line segments with known lengths $a$ and $b$. I made a diagram below to illustrate the problem.



enter image description here







geometry trigonometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









user1938107user1938107

15310




15310











  • $begingroup$
    If the lengths $a$ and $b$ are fixed, then you must also have $lVert p_1-p_2rVert^2=a^2+b^2$ for there to be any solution at all. It this condition is meth, then there can be up to four solutions, two if $p_1$ must be an endpoint of $a$ and $p_2$ must be an endpoint of $b$.
    $endgroup$
    – amd
    3 hours ago










  • $begingroup$
    @amd yes p1 and p2 are the endpoints of a and b. I need their mutual endpoint
    $endgroup$
    – user1938107
    2 hours ago
















  • $begingroup$
    If the lengths $a$ and $b$ are fixed, then you must also have $lVert p_1-p_2rVert^2=a^2+b^2$ for there to be any solution at all. It this condition is meth, then there can be up to four solutions, two if $p_1$ must be an endpoint of $a$ and $p_2$ must be an endpoint of $b$.
    $endgroup$
    – amd
    3 hours ago










  • $begingroup$
    @amd yes p1 and p2 are the endpoints of a and b. I need their mutual endpoint
    $endgroup$
    – user1938107
    2 hours ago















$begingroup$
If the lengths $a$ and $b$ are fixed, then you must also have $lVert p_1-p_2rVert^2=a^2+b^2$ for there to be any solution at all. It this condition is meth, then there can be up to four solutions, two if $p_1$ must be an endpoint of $a$ and $p_2$ must be an endpoint of $b$.
$endgroup$
– amd
3 hours ago




$begingroup$
If the lengths $a$ and $b$ are fixed, then you must also have $lVert p_1-p_2rVert^2=a^2+b^2$ for there to be any solution at all. It this condition is meth, then there can be up to four solutions, two if $p_1$ must be an endpoint of $a$ and $p_2$ must be an endpoint of $b$.
$endgroup$
– amd
3 hours ago












$begingroup$
@amd yes p1 and p2 are the endpoints of a and b. I need their mutual endpoint
$endgroup$
– user1938107
2 hours ago




$begingroup$
@amd yes p1 and p2 are the endpoints of a and b. I need their mutual endpoint
$endgroup$
– user1938107
2 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

Sometimes a figure is worth a 1000 words:



enter image description here



In three dimensions:



enter image description here






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    If you draw a circle with diameter $sqrta^2+b^2$ then $p_3$ can be either of two points on that circle.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      The lengths $a$ and $b$ are also fixed so this doesn't completely work.
      $endgroup$
      – AHusain
      3 hours ago










    • $begingroup$
      Sorry, this answer should have been a comment.
      $endgroup$
      – steven gregory
      3 hours ago











    • $begingroup$
      sure, but how can I find where that point is on the circle?
      $endgroup$
      – user1938107
      3 hours ago


















    1












    $begingroup$

    • Let $ell$ be the distance between $p_1$ and $p_2$, and let $p_3$ be the point where the two line segments will meet.


    • The three points $p_1, p_2, p_3$ form a triangle whose side lengths we know: $a, b, ell$.


    • We can find out where $p_3$ is by measuring properties of this triangle. Draw a perpendicular altitude from $p_3$ down to the side of the triangle between $p_1$ and $p_2$. Call the intersection point $p_4$.



    • If we knew the length $h$ of this altitude, we would know where to put $p_3$. First, we could find out where $p_4$ is. By the Pythagorean theorem, the distance between $p_1$ and $p_4$ is $sqrta^2 - h^2$. So
      $$p_4 = p_1 + fracsqrta^2-h^2ell (p_2 - p_1)$$



      Next, we would use $p_4$ to find out where to put $p_3$. We start from $p_4$ and travel a distance $h$ in a direction perpendicular to the $p_1$ $p_2$ base of the triangle.



      In two dimensions, we have two choices of perpendicular direction. In three dimensions, we actually have an infinite number of perpendicular directions[*], so you'll have to pick one. Pick a unit vector $widehatu$ in a perpendicular direction.



      Then $p_3 = p_4 + hcdot widehatu$, which gives you the answer you want.



    • But how do we find $h$? We can find $h$ if we know the area of the triangle. Heron's formula lets you calculate the area of the triangle when you know the length of all the sides. $A = sqrts(s-a)(s-b)(s-ell)$, where $s$ is half the perimeter $s = (a+b+ell)/2$. Once you have the area, you can calculate the height of the altitude: $A = frac12textbasetimestextheight$, so $h = 2A/ell$.


    [*] In 3D, you have an infinite number of perpendicular directions. Imagine $p_1=langle 0,0rangle$ and $p_2 = langle 1,0rangle$, and $a$ and $b$ are some numbers. There's a satisfactory point $p_3$ in the x-y plane. But if you spin $p_3$ around the $x$-axis, you find an infinite number of other satisfactory points too.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3206136%2ffind-the-coordinate-of-two-line-segments-that-are-perpendicular%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Sometimes a figure is worth a 1000 words:



      enter image description here



      In three dimensions:



      enter image description here






      share|cite|improve this answer











      $endgroup$

















        3












        $begingroup$

        Sometimes a figure is worth a 1000 words:



        enter image description here



        In three dimensions:



        enter image description here






        share|cite|improve this answer











        $endgroup$















          3












          3








          3





          $begingroup$

          Sometimes a figure is worth a 1000 words:



          enter image description here



          In three dimensions:



          enter image description here






          share|cite|improve this answer











          $endgroup$



          Sometimes a figure is worth a 1000 words:



          enter image description here



          In three dimensions:



          enter image description here







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 2 hours ago









          David G. StorkDavid G. Stork

          12.3k41836




          12.3k41836





















              1












              $begingroup$

              If you draw a circle with diameter $sqrta^2+b^2$ then $p_3$ can be either of two points on that circle.






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                The lengths $a$ and $b$ are also fixed so this doesn't completely work.
                $endgroup$
                – AHusain
                3 hours ago










              • $begingroup$
                Sorry, this answer should have been a comment.
                $endgroup$
                – steven gregory
                3 hours ago











              • $begingroup$
                sure, but how can I find where that point is on the circle?
                $endgroup$
                – user1938107
                3 hours ago















              1












              $begingroup$

              If you draw a circle with diameter $sqrta^2+b^2$ then $p_3$ can be either of two points on that circle.






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                The lengths $a$ and $b$ are also fixed so this doesn't completely work.
                $endgroup$
                – AHusain
                3 hours ago










              • $begingroup$
                Sorry, this answer should have been a comment.
                $endgroup$
                – steven gregory
                3 hours ago











              • $begingroup$
                sure, but how can I find where that point is on the circle?
                $endgroup$
                – user1938107
                3 hours ago













              1












              1








              1





              $begingroup$

              If you draw a circle with diameter $sqrta^2+b^2$ then $p_3$ can be either of two points on that circle.






              share|cite|improve this answer











              $endgroup$



              If you draw a circle with diameter $sqrta^2+b^2$ then $p_3$ can be either of two points on that circle.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 3 hours ago

























              answered 3 hours ago









              steven gregorysteven gregory

              18.5k32459




              18.5k32459











              • $begingroup$
                The lengths $a$ and $b$ are also fixed so this doesn't completely work.
                $endgroup$
                – AHusain
                3 hours ago










              • $begingroup$
                Sorry, this answer should have been a comment.
                $endgroup$
                – steven gregory
                3 hours ago











              • $begingroup$
                sure, but how can I find where that point is on the circle?
                $endgroup$
                – user1938107
                3 hours ago
















              • $begingroup$
                The lengths $a$ and $b$ are also fixed so this doesn't completely work.
                $endgroup$
                – AHusain
                3 hours ago










              • $begingroup$
                Sorry, this answer should have been a comment.
                $endgroup$
                – steven gregory
                3 hours ago











              • $begingroup$
                sure, but how can I find where that point is on the circle?
                $endgroup$
                – user1938107
                3 hours ago















              $begingroup$
              The lengths $a$ and $b$ are also fixed so this doesn't completely work.
              $endgroup$
              – AHusain
              3 hours ago




              $begingroup$
              The lengths $a$ and $b$ are also fixed so this doesn't completely work.
              $endgroup$
              – AHusain
              3 hours ago












              $begingroup$
              Sorry, this answer should have been a comment.
              $endgroup$
              – steven gregory
              3 hours ago





              $begingroup$
              Sorry, this answer should have been a comment.
              $endgroup$
              – steven gregory
              3 hours ago













              $begingroup$
              sure, but how can I find where that point is on the circle?
              $endgroup$
              – user1938107
              3 hours ago




              $begingroup$
              sure, but how can I find where that point is on the circle?
              $endgroup$
              – user1938107
              3 hours ago











              1












              $begingroup$

              • Let $ell$ be the distance between $p_1$ and $p_2$, and let $p_3$ be the point where the two line segments will meet.


              • The three points $p_1, p_2, p_3$ form a triangle whose side lengths we know: $a, b, ell$.


              • We can find out where $p_3$ is by measuring properties of this triangle. Draw a perpendicular altitude from $p_3$ down to the side of the triangle between $p_1$ and $p_2$. Call the intersection point $p_4$.



              • If we knew the length $h$ of this altitude, we would know where to put $p_3$. First, we could find out where $p_4$ is. By the Pythagorean theorem, the distance between $p_1$ and $p_4$ is $sqrta^2 - h^2$. So
                $$p_4 = p_1 + fracsqrta^2-h^2ell (p_2 - p_1)$$



                Next, we would use $p_4$ to find out where to put $p_3$. We start from $p_4$ and travel a distance $h$ in a direction perpendicular to the $p_1$ $p_2$ base of the triangle.



                In two dimensions, we have two choices of perpendicular direction. In three dimensions, we actually have an infinite number of perpendicular directions[*], so you'll have to pick one. Pick a unit vector $widehatu$ in a perpendicular direction.



                Then $p_3 = p_4 + hcdot widehatu$, which gives you the answer you want.



              • But how do we find $h$? We can find $h$ if we know the area of the triangle. Heron's formula lets you calculate the area of the triangle when you know the length of all the sides. $A = sqrts(s-a)(s-b)(s-ell)$, where $s$ is half the perimeter $s = (a+b+ell)/2$. Once you have the area, you can calculate the height of the altitude: $A = frac12textbasetimestextheight$, so $h = 2A/ell$.


              [*] In 3D, you have an infinite number of perpendicular directions. Imagine $p_1=langle 0,0rangle$ and $p_2 = langle 1,0rangle$, and $a$ and $b$ are some numbers. There's a satisfactory point $p_3$ in the x-y plane. But if you spin $p_3$ around the $x$-axis, you find an infinite number of other satisfactory points too.






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                • Let $ell$ be the distance between $p_1$ and $p_2$, and let $p_3$ be the point where the two line segments will meet.


                • The three points $p_1, p_2, p_3$ form a triangle whose side lengths we know: $a, b, ell$.


                • We can find out where $p_3$ is by measuring properties of this triangle. Draw a perpendicular altitude from $p_3$ down to the side of the triangle between $p_1$ and $p_2$. Call the intersection point $p_4$.



                • If we knew the length $h$ of this altitude, we would know where to put $p_3$. First, we could find out where $p_4$ is. By the Pythagorean theorem, the distance between $p_1$ and $p_4$ is $sqrta^2 - h^2$. So
                  $$p_4 = p_1 + fracsqrta^2-h^2ell (p_2 - p_1)$$



                  Next, we would use $p_4$ to find out where to put $p_3$. We start from $p_4$ and travel a distance $h$ in a direction perpendicular to the $p_1$ $p_2$ base of the triangle.



                  In two dimensions, we have two choices of perpendicular direction. In three dimensions, we actually have an infinite number of perpendicular directions[*], so you'll have to pick one. Pick a unit vector $widehatu$ in a perpendicular direction.



                  Then $p_3 = p_4 + hcdot widehatu$, which gives you the answer you want.



                • But how do we find $h$? We can find $h$ if we know the area of the triangle. Heron's formula lets you calculate the area of the triangle when you know the length of all the sides. $A = sqrts(s-a)(s-b)(s-ell)$, where $s$ is half the perimeter $s = (a+b+ell)/2$. Once you have the area, you can calculate the height of the altitude: $A = frac12textbasetimestextheight$, so $h = 2A/ell$.


                [*] In 3D, you have an infinite number of perpendicular directions. Imagine $p_1=langle 0,0rangle$ and $p_2 = langle 1,0rangle$, and $a$ and $b$ are some numbers. There's a satisfactory point $p_3$ in the x-y plane. But if you spin $p_3$ around the $x$-axis, you find an infinite number of other satisfactory points too.






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  • Let $ell$ be the distance between $p_1$ and $p_2$, and let $p_3$ be the point where the two line segments will meet.


                  • The three points $p_1, p_2, p_3$ form a triangle whose side lengths we know: $a, b, ell$.


                  • We can find out where $p_3$ is by measuring properties of this triangle. Draw a perpendicular altitude from $p_3$ down to the side of the triangle between $p_1$ and $p_2$. Call the intersection point $p_4$.



                  • If we knew the length $h$ of this altitude, we would know where to put $p_3$. First, we could find out where $p_4$ is. By the Pythagorean theorem, the distance between $p_1$ and $p_4$ is $sqrta^2 - h^2$. So
                    $$p_4 = p_1 + fracsqrta^2-h^2ell (p_2 - p_1)$$



                    Next, we would use $p_4$ to find out where to put $p_3$. We start from $p_4$ and travel a distance $h$ in a direction perpendicular to the $p_1$ $p_2$ base of the triangle.



                    In two dimensions, we have two choices of perpendicular direction. In three dimensions, we actually have an infinite number of perpendicular directions[*], so you'll have to pick one. Pick a unit vector $widehatu$ in a perpendicular direction.



                    Then $p_3 = p_4 + hcdot widehatu$, which gives you the answer you want.



                  • But how do we find $h$? We can find $h$ if we know the area of the triangle. Heron's formula lets you calculate the area of the triangle when you know the length of all the sides. $A = sqrts(s-a)(s-b)(s-ell)$, where $s$ is half the perimeter $s = (a+b+ell)/2$. Once you have the area, you can calculate the height of the altitude: $A = frac12textbasetimestextheight$, so $h = 2A/ell$.


                  [*] In 3D, you have an infinite number of perpendicular directions. Imagine $p_1=langle 0,0rangle$ and $p_2 = langle 1,0rangle$, and $a$ and $b$ are some numbers. There's a satisfactory point $p_3$ in the x-y plane. But if you spin $p_3$ around the $x$-axis, you find an infinite number of other satisfactory points too.






                  share|cite|improve this answer









                  $endgroup$



                  • Let $ell$ be the distance between $p_1$ and $p_2$, and let $p_3$ be the point where the two line segments will meet.


                  • The three points $p_1, p_2, p_3$ form a triangle whose side lengths we know: $a, b, ell$.


                  • We can find out where $p_3$ is by measuring properties of this triangle. Draw a perpendicular altitude from $p_3$ down to the side of the triangle between $p_1$ and $p_2$. Call the intersection point $p_4$.



                  • If we knew the length $h$ of this altitude, we would know where to put $p_3$. First, we could find out where $p_4$ is. By the Pythagorean theorem, the distance between $p_1$ and $p_4$ is $sqrta^2 - h^2$. So
                    $$p_4 = p_1 + fracsqrta^2-h^2ell (p_2 - p_1)$$



                    Next, we would use $p_4$ to find out where to put $p_3$. We start from $p_4$ and travel a distance $h$ in a direction perpendicular to the $p_1$ $p_2$ base of the triangle.



                    In two dimensions, we have two choices of perpendicular direction. In three dimensions, we actually have an infinite number of perpendicular directions[*], so you'll have to pick one. Pick a unit vector $widehatu$ in a perpendicular direction.



                    Then $p_3 = p_4 + hcdot widehatu$, which gives you the answer you want.



                  • But how do we find $h$? We can find $h$ if we know the area of the triangle. Heron's formula lets you calculate the area of the triangle when you know the length of all the sides. $A = sqrts(s-a)(s-b)(s-ell)$, where $s$ is half the perimeter $s = (a+b+ell)/2$. Once you have the area, you can calculate the height of the altitude: $A = frac12textbasetimestextheight$, so $h = 2A/ell$.


                  [*] In 3D, you have an infinite number of perpendicular directions. Imagine $p_1=langle 0,0rangle$ and $p_2 = langle 1,0rangle$, and $a$ and $b$ are some numbers. There's a satisfactory point $p_3$ in the x-y plane. But if you spin $p_3$ around the $x$-axis, you find an infinite number of other satisfactory points too.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  user326210user326210

                  9,462927




                  9,462927



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3206136%2ffind-the-coordinate-of-two-line-segments-that-are-perpendicular%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                      Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                      ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result