ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)Tensorflow: can not convert float into a tensor?How to use Embedding() with 3D tensor in Keras?Tensorflow regression predicting 1 for all inputsKeras LSTM: use weights from Keras model to replicate predictions using numpyCan Sequence to sequence models be used to convert code from one programming language to another?Understanding LSTM structure3 dimensional array as input with Embedding Layer and LSTM in KerasTensor Operation in TensorflowHow to convert tf.feature_column into a tensor?Tensor operation in Tensorflow
Where did the extra Pym particles come from in Endgame?
When India mathematicians did know Euclid's Elements?
Toggle Overlays shortcut?
Cannot populate data in lightning data table
Please, smoke with good manners
Can solid acids and bases have pH values? If not, how are they classified as acids or bases?
Mysql fixing root password
Were there two appearances of Stan Lee?
Was it really necessary for the Lunar Module to have 2 stages?
Python "triplet" dictionary?
How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?
Pressure to defend the relevance of one's area of mathematics
What does YCWCYODFTRFDTY mean?
Upright [...] in italics quotation
Unexpected email from Yorkshire Bank
Stateful vs non-stateful app
Any examples of headwear for races with animal ears?
How can I get precisely a certain cubic cm by changing the following factors?
TikZ how to make supply and demand arrows for nodes?
Modify locally tikzset
What is a Recurrent Neural Network?
What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?
Will tsunami waves travel forever if there was no land?
Subtleties of choosing the sequence of tenses in Russian
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)
Tensorflow: can not convert float into a tensor?How to use Embedding() with 3D tensor in Keras?Tensorflow regression predicting 1 for all inputsKeras LSTM: use weights from Keras model to replicate predictions using numpyCan Sequence to sequence models be used to convert code from one programming language to another?Understanding LSTM structure3 dimensional array as input with Embedding Layer and LSTM in KerasTensor Operation in TensorflowHow to convert tf.feature_column into a tensor?Tensor operation in Tensorflow
$begingroup$
I'm working on a sequence to sequence approach using LSTM and a VAE with an attention mechanism.
p = np.random.permutation(len(input_data))
input_data = input_data[p]
teacher_data = teacher_data[p]
target_data = target_data[p]
BUFFER_SIZE = len(input_data)
BATCH_SIZE = 64
embedding_dim = 100
units = 256
vocab_in_size = len(input_lang.word2idx)
vocab_out_size = len(target_lang.word2idx)
# Create the Encoder layers first.
encoder_inputs = Input(shape=(None,))
encoder_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
encoder_lstm =LSTM(units=units, return_sequences=True, return_state=True)
encoder_outputs, state_h, state_c =
encoder_lstm(encoder_emb(encoder_inputs))
encoder_states = [state_h, state_c]
#################### Adding VAE #######################
latent_dim =256
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]
def vae_loss(y_true, y_pred):
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=-1)
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. - z_log_var,
axis=-1)
return recon + kl[:, None]
##########################
# Now create the Decoder layers.
decoder_inputs = Input(shape=(None,))
decoder_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
decoder_lstm = LSTM(units=units, return_sequences=True, return_state=True)
decoder_lstm_out, _, _ = decoder_lstm(decoder_emb(decoder_inputs),
initial_state=encoder_states)
# Attention layer
attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer([encoder_outputs, decoder_lstm_out])
When I execute this code I get this error at the last line:
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)
I tried all solutions given for this error, no one solved my problem, if any one can help, I'll be so thankfull.
tensorflow lstm sequence-to-sequence attention-mechanism vae
$endgroup$
add a comment |
$begingroup$
I'm working on a sequence to sequence approach using LSTM and a VAE with an attention mechanism.
p = np.random.permutation(len(input_data))
input_data = input_data[p]
teacher_data = teacher_data[p]
target_data = target_data[p]
BUFFER_SIZE = len(input_data)
BATCH_SIZE = 64
embedding_dim = 100
units = 256
vocab_in_size = len(input_lang.word2idx)
vocab_out_size = len(target_lang.word2idx)
# Create the Encoder layers first.
encoder_inputs = Input(shape=(None,))
encoder_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
encoder_lstm =LSTM(units=units, return_sequences=True, return_state=True)
encoder_outputs, state_h, state_c =
encoder_lstm(encoder_emb(encoder_inputs))
encoder_states = [state_h, state_c]
#################### Adding VAE #######################
latent_dim =256
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]
def vae_loss(y_true, y_pred):
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=-1)
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. - z_log_var,
axis=-1)
return recon + kl[:, None]
##########################
# Now create the Decoder layers.
decoder_inputs = Input(shape=(None,))
decoder_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
decoder_lstm = LSTM(units=units, return_sequences=True, return_state=True)
decoder_lstm_out, _, _ = decoder_lstm(decoder_emb(decoder_inputs),
initial_state=encoder_states)
# Attention layer
attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer([encoder_outputs, decoder_lstm_out])
When I execute this code I get this error at the last line:
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)
I tried all solutions given for this error, no one solved my problem, if any one can help, I'll be so thankfull.
tensorflow lstm sequence-to-sequence attention-mechanism vae
$endgroup$
add a comment |
$begingroup$
I'm working on a sequence to sequence approach using LSTM and a VAE with an attention mechanism.
p = np.random.permutation(len(input_data))
input_data = input_data[p]
teacher_data = teacher_data[p]
target_data = target_data[p]
BUFFER_SIZE = len(input_data)
BATCH_SIZE = 64
embedding_dim = 100
units = 256
vocab_in_size = len(input_lang.word2idx)
vocab_out_size = len(target_lang.word2idx)
# Create the Encoder layers first.
encoder_inputs = Input(shape=(None,))
encoder_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
encoder_lstm =LSTM(units=units, return_sequences=True, return_state=True)
encoder_outputs, state_h, state_c =
encoder_lstm(encoder_emb(encoder_inputs))
encoder_states = [state_h, state_c]
#################### Adding VAE #######################
latent_dim =256
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]
def vae_loss(y_true, y_pred):
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=-1)
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. - z_log_var,
axis=-1)
return recon + kl[:, None]
##########################
# Now create the Decoder layers.
decoder_inputs = Input(shape=(None,))
decoder_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
decoder_lstm = LSTM(units=units, return_sequences=True, return_state=True)
decoder_lstm_out, _, _ = decoder_lstm(decoder_emb(decoder_inputs),
initial_state=encoder_states)
# Attention layer
attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer([encoder_outputs, decoder_lstm_out])
When I execute this code I get this error at the last line:
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)
I tried all solutions given for this error, no one solved my problem, if any one can help, I'll be so thankfull.
tensorflow lstm sequence-to-sequence attention-mechanism vae
$endgroup$
I'm working on a sequence to sequence approach using LSTM and a VAE with an attention mechanism.
p = np.random.permutation(len(input_data))
input_data = input_data[p]
teacher_data = teacher_data[p]
target_data = target_data[p]
BUFFER_SIZE = len(input_data)
BATCH_SIZE = 64
embedding_dim = 100
units = 256
vocab_in_size = len(input_lang.word2idx)
vocab_out_size = len(target_lang.word2idx)
# Create the Encoder layers first.
encoder_inputs = Input(shape=(None,))
encoder_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
encoder_lstm =LSTM(units=units, return_sequences=True, return_state=True)
encoder_outputs, state_h, state_c =
encoder_lstm(encoder_emb(encoder_inputs))
encoder_states = [state_h, state_c]
#################### Adding VAE #######################
latent_dim =256
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]
def vae_loss(y_true, y_pred):
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=-1)
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. - z_log_var,
axis=-1)
return recon + kl[:, None]
##########################
# Now create the Decoder layers.
decoder_inputs = Input(shape=(None,))
decoder_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
decoder_lstm = LSTM(units=units, return_sequences=True, return_state=True)
decoder_lstm_out, _, _ = decoder_lstm(decoder_emb(decoder_inputs),
initial_state=encoder_states)
# Attention layer
attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer([encoder_outputs, decoder_lstm_out])
When I execute this code I get this error at the last line:
ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)
I tried all solutions given for this error, no one solved my problem, if any one can help, I'll be so thankfull.
tensorflow lstm sequence-to-sequence attention-mechanism vae
tensorflow lstm sequence-to-sequence attention-mechanism vae
asked 4 mins ago
KikioKikio
9010
9010
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f51086%2fvalueerror-cannot-convert-a-partially-known-tensorshape-to-a-tensor-256%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f51086%2fvalueerror-cannot-convert-a-partially-known-tensorshape-to-a-tensor-256%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown