ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)Tensorflow: can not convert float into a tensor?How to use Embedding() with 3D tensor in Keras?Tensorflow regression predicting 1 for all inputsKeras LSTM: use weights from Keras model to replicate predictions using numpyCan Sequence to sequence models be used to convert code from one programming language to another?Understanding LSTM structure3 dimensional array as input with Embedding Layer and LSTM in KerasTensor Operation in TensorflowHow to convert tf.feature_column into a tensor?Tensor operation in Tensorflow

Where did the extra Pym particles come from in Endgame?

When India mathematicians did know Euclid's Elements?

Toggle Overlays shortcut?

Cannot populate data in lightning data table

Please, smoke with good manners

Can solid acids and bases have pH values? If not, how are they classified as acids or bases?

Mysql fixing root password

Were there two appearances of Stan Lee?

Was it really necessary for the Lunar Module to have 2 stages?

Python "triplet" dictionary?

How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?

Pressure to defend the relevance of one's area of mathematics

What does YCWCYODFTRFDTY mean?

Upright [...] in italics quotation

Unexpected email from Yorkshire Bank

Stateful vs non-stateful app

Any examples of headwear for races with animal ears?

How can I get precisely a certain cubic cm by changing the following factors?

TikZ how to make supply and demand arrows for nodes?

Modify locally tikzset

What is a Recurrent Neural Network?

What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?

Will tsunami waves travel forever if there was no land?

Subtleties of choosing the sequence of tenses in Russian



ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)


Tensorflow: can not convert float into a tensor?How to use Embedding() with 3D tensor in Keras?Tensorflow regression predicting 1 for all inputsKeras LSTM: use weights from Keras model to replicate predictions using numpyCan Sequence to sequence models be used to convert code from one programming language to another?Understanding LSTM structure3 dimensional array as input with Embedding Layer and LSTM in KerasTensor Operation in TensorflowHow to convert tf.feature_column into a tensor?Tensor operation in Tensorflow













0












$begingroup$


I'm working on a sequence to sequence approach using LSTM and a VAE with an attention mechanism.



p = np.random.permutation(len(input_data))
input_data = input_data[p]
teacher_data = teacher_data[p]
target_data = target_data[p]
BUFFER_SIZE = len(input_data)
BATCH_SIZE = 64
embedding_dim = 100
units = 256
vocab_in_size = len(input_lang.word2idx)
vocab_out_size = len(target_lang.word2idx)

# Create the Encoder layers first.

encoder_inputs = Input(shape=(None,))
encoder_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
encoder_lstm =LSTM(units=units, return_sequences=True, return_state=True)
encoder_outputs, state_h, state_c =
encoder_lstm(encoder_emb(encoder_inputs))
encoder_states = [state_h, state_c]
#################### Adding VAE #######################
latent_dim =256
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon

z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]

def vae_loss(y_true, y_pred):

recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=-1)
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. - z_log_var,
axis=-1)
return recon + kl[:, None]

##########################

# Now create the Decoder layers.
decoder_inputs = Input(shape=(None,))
decoder_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
decoder_lstm = LSTM(units=units, return_sequences=True, return_state=True)
decoder_lstm_out, _, _ = decoder_lstm(decoder_emb(decoder_inputs),
initial_state=encoder_states)

# Attention layer
attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer([encoder_outputs, decoder_lstm_out])


When I execute this code I get this error at the last line:




ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)




I tried all solutions given for this error, no one solved my problem, if any one can help, I'll be so thankfull.









share









$endgroup$
















    0












    $begingroup$


    I'm working on a sequence to sequence approach using LSTM and a VAE with an attention mechanism.



    p = np.random.permutation(len(input_data))
    input_data = input_data[p]
    teacher_data = teacher_data[p]
    target_data = target_data[p]
    BUFFER_SIZE = len(input_data)
    BATCH_SIZE = 64
    embedding_dim = 100
    units = 256
    vocab_in_size = len(input_lang.word2idx)
    vocab_out_size = len(target_lang.word2idx)

    # Create the Encoder layers first.

    encoder_inputs = Input(shape=(None,))
    encoder_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
    encoder_lstm =LSTM(units=units, return_sequences=True, return_state=True)
    encoder_outputs, state_h, state_c =
    encoder_lstm(encoder_emb(encoder_inputs))
    encoder_states = [state_h, state_c]
    #################### Adding VAE #######################
    latent_dim =256
    # output layer for mean and log variance
    z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
    z_log_var = Dense(latent_dim)(encoder_outputs)
    def sampling(args):
    batch_size=1
    z_mean, z_log_sigma = args
    epsilon = K.random_normal(shape=(batch_size, latent_dim),
    mean=0., stddev=1.)
    return z_mean + K.exp(z_log_sigma) * epsilon

    z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
    state_h= z
    state_c = z
    encoder_states = [state_h, state_c]

    def vae_loss(y_true, y_pred):

    recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=-1)
    kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. - z_log_var,
    axis=-1)
    return recon + kl[:, None]

    ##########################

    # Now create the Decoder layers.
    decoder_inputs = Input(shape=(None,))
    decoder_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
    decoder_lstm = LSTM(units=units, return_sequences=True, return_state=True)
    decoder_lstm_out, _, _ = decoder_lstm(decoder_emb(decoder_inputs),
    initial_state=encoder_states)

    # Attention layer
    attn_layer = AttentionLayer(name='attention_layer')
    attn_out, attn_states = attn_layer([encoder_outputs, decoder_lstm_out])


    When I execute this code I get this error at the last line:




    ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)




    I tried all solutions given for this error, no one solved my problem, if any one can help, I'll be so thankfull.









    share









    $endgroup$














      0












      0








      0





      $begingroup$


      I'm working on a sequence to sequence approach using LSTM and a VAE with an attention mechanism.



      p = np.random.permutation(len(input_data))
      input_data = input_data[p]
      teacher_data = teacher_data[p]
      target_data = target_data[p]
      BUFFER_SIZE = len(input_data)
      BATCH_SIZE = 64
      embedding_dim = 100
      units = 256
      vocab_in_size = len(input_lang.word2idx)
      vocab_out_size = len(target_lang.word2idx)

      # Create the Encoder layers first.

      encoder_inputs = Input(shape=(None,))
      encoder_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
      encoder_lstm =LSTM(units=units, return_sequences=True, return_state=True)
      encoder_outputs, state_h, state_c =
      encoder_lstm(encoder_emb(encoder_inputs))
      encoder_states = [state_h, state_c]
      #################### Adding VAE #######################
      latent_dim =256
      # output layer for mean and log variance
      z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
      z_log_var = Dense(latent_dim)(encoder_outputs)
      def sampling(args):
      batch_size=1
      z_mean, z_log_sigma = args
      epsilon = K.random_normal(shape=(batch_size, latent_dim),
      mean=0., stddev=1.)
      return z_mean + K.exp(z_log_sigma) * epsilon

      z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
      state_h= z
      state_c = z
      encoder_states = [state_h, state_c]

      def vae_loss(y_true, y_pred):

      recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=-1)
      kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. - z_log_var,
      axis=-1)
      return recon + kl[:, None]

      ##########################

      # Now create the Decoder layers.
      decoder_inputs = Input(shape=(None,))
      decoder_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
      decoder_lstm = LSTM(units=units, return_sequences=True, return_state=True)
      decoder_lstm_out, _, _ = decoder_lstm(decoder_emb(decoder_inputs),
      initial_state=encoder_states)

      # Attention layer
      attn_layer = AttentionLayer(name='attention_layer')
      attn_out, attn_states = attn_layer([encoder_outputs, decoder_lstm_out])


      When I execute this code I get this error at the last line:




      ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)




      I tried all solutions given for this error, no one solved my problem, if any one can help, I'll be so thankfull.









      share









      $endgroup$




      I'm working on a sequence to sequence approach using LSTM and a VAE with an attention mechanism.



      p = np.random.permutation(len(input_data))
      input_data = input_data[p]
      teacher_data = teacher_data[p]
      target_data = target_data[p]
      BUFFER_SIZE = len(input_data)
      BATCH_SIZE = 64
      embedding_dim = 100
      units = 256
      vocab_in_size = len(input_lang.word2idx)
      vocab_out_size = len(target_lang.word2idx)

      # Create the Encoder layers first.

      encoder_inputs = Input(shape=(None,))
      encoder_emb = Embedding(input_dim=vocab_in_size, output_dim=embedding_dim)
      encoder_lstm =LSTM(units=units, return_sequences=True, return_state=True)
      encoder_outputs, state_h, state_c =
      encoder_lstm(encoder_emb(encoder_inputs))
      encoder_states = [state_h, state_c]
      #################### Adding VAE #######################
      latent_dim =256
      # output layer for mean and log variance
      z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
      z_log_var = Dense(latent_dim)(encoder_outputs)
      def sampling(args):
      batch_size=1
      z_mean, z_log_sigma = args
      epsilon = K.random_normal(shape=(batch_size, latent_dim),
      mean=0., stddev=1.)
      return z_mean + K.exp(z_log_sigma) * epsilon

      z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
      state_h= z
      state_c = z
      encoder_states = [state_h, state_c]

      def vae_loss(y_true, y_pred):

      recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=-1)
      kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. - z_log_var,
      axis=-1)
      return recon + kl[:, None]

      ##########################

      # Now create the Decoder layers.
      decoder_inputs = Input(shape=(None,))
      decoder_emb = Embedding(input_dim=vocab_out_size, output_dim=embedding_dim)
      decoder_lstm = LSTM(units=units, return_sequences=True, return_state=True)
      decoder_lstm_out, _, _ = decoder_lstm(decoder_emb(decoder_inputs),
      initial_state=encoder_states)

      # Attention layer
      attn_layer = AttentionLayer(name='attention_layer')
      attn_out, attn_states = attn_layer([encoder_outputs, decoder_lstm_out])


      When I execute this code I get this error at the last line:




      ValueError: Cannot convert a partially known TensorShape to a Tensor: (?, 256)




      I tried all solutions given for this error, no one solved my problem, if any one can help, I'll be so thankfull.







      tensorflow lstm sequence-to-sequence attention-mechanism vae





      share












      share










      share



      share










      asked 4 mins ago









      KikioKikio

      9010




      9010




















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f51086%2fvalueerror-cannot-convert-a-partially-known-tensorshape-to-a-tensor-256%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f51086%2fvalueerror-cannot-convert-a-partially-known-tensorshape-to-a-tensor-256%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result