Why does the freezing point matter when picking cooler ice packs? The Next CEO of Stack OverflowThermodynamics of supercooled waterLiquid with freezing point above 0 Celsius that could be use at ice rinksFreezing point depression - cooling my drink with the same method as salt on a highway?Please clarify how freezer size and load affects rate of freezingDo ice crystals grow only as heat is being removed or also when an item is at a set temperature?What determines the rate at which an item will freeze in the given context?Why does ice form on bridges even if the temperature is above freezing?Why does hitting a cold bag of water freeze?Why doesn't the moisture freeze out of the air when the air temperature is below freezing?Temperature of items from a freezer
Are British MPs missing the point, with these 'Indicative Votes'?
What happens if you break a law in another country outside of that country?
Does Germany produce more waste than the US?
Could you use a laser beam as a modulated carrier wave for radio signal?
How can the PCs determine if an item is a phylactery?
Was the Stack Exchange "Happy April Fools" page fitting with the 90s code?
Gauss' Posthumous Publications?
How to find if SQL server backup is encrypted with TDE without restoring the backup
Why does the freezing point matter when picking cooler ice packs?
Calculating discount not working
How to pronounce fünf in 45
Could a dragon use its wings to swim?
Avoiding the "not like other girls" trope?
How can I separate the number from the unit in argument?
What is the difference between 'contrib' and 'non-free' packages repositories?
Identify and count spells (Distinctive events within each group)
How should I connect my cat5 cable to connectors having an orange-green line?
Is a linearly independent set whose span is dense a Schauder basis?
What does this strange code stamp on my passport mean?
Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?
Can a PhD from a non-TU9 German university become a professor in a TU9 university?
Direct Implications Between USA and UK in Event of No-Deal Brexit
Why did early computer designers eschew integers?
Mathematica command that allows it to read my intentions
Why does the freezing point matter when picking cooler ice packs?
The Next CEO of Stack OverflowThermodynamics of supercooled waterLiquid with freezing point above 0 Celsius that could be use at ice rinksFreezing point depression - cooling my drink with the same method as salt on a highway?Please clarify how freezer size and load affects rate of freezingDo ice crystals grow only as heat is being removed or also when an item is at a set temperature?What determines the rate at which an item will freeze in the given context?Why does ice form on bridges even if the temperature is above freezing?Why does hitting a cold bag of water freeze?Why doesn't the moisture freeze out of the air when the air temperature is below freezing?Temperature of items from a freezer
$begingroup$
I'm looking at buying some ice packs for my cooler. Looking a specific brand they have several "models", each with a different freezing temperature. Why does this matter?
Let's say I have one pack that freezes at 5 °F (-15 °C) and another that freezes at 34 °F (1 °C). Let's also assume they are the same mass. Let's say I put both of these in my freezer that is at 0 °F (-18 °C) and leave them long enough that they both reach 0 °F (-18 °C). If I then put each of them in identical coolers, won't they have the same cooling capacity? One may cool faster than the other, but on a long enough timeline they'll both cool the cooler to the same temperature (assuming that the cooler is insulated enough that heat into the cooler is slower than heat into the ice pack.
freezing
New contributor
$endgroup$
add a comment |
$begingroup$
I'm looking at buying some ice packs for my cooler. Looking a specific brand they have several "models", each with a different freezing temperature. Why does this matter?
Let's say I have one pack that freezes at 5 °F (-15 °C) and another that freezes at 34 °F (1 °C). Let's also assume they are the same mass. Let's say I put both of these in my freezer that is at 0 °F (-18 °C) and leave them long enough that they both reach 0 °F (-18 °C). If I then put each of them in identical coolers, won't they have the same cooling capacity? One may cool faster than the other, but on a long enough timeline they'll both cool the cooler to the same temperature (assuming that the cooler is insulated enough that heat into the cooler is slower than heat into the ice pack.
freezing
New contributor
$endgroup$
1
$begingroup$
The freezing point is useful, but I'd also want to know the heat capacity and latent heat of fusion.
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
Isn't 34 °F a typo? That temperature is above the freezing point of water at the common pressures.
$endgroup$
– Peter Mortensen
4 hours ago
add a comment |
$begingroup$
I'm looking at buying some ice packs for my cooler. Looking a specific brand they have several "models", each with a different freezing temperature. Why does this matter?
Let's say I have one pack that freezes at 5 °F (-15 °C) and another that freezes at 34 °F (1 °C). Let's also assume they are the same mass. Let's say I put both of these in my freezer that is at 0 °F (-18 °C) and leave them long enough that they both reach 0 °F (-18 °C). If I then put each of them in identical coolers, won't they have the same cooling capacity? One may cool faster than the other, but on a long enough timeline they'll both cool the cooler to the same temperature (assuming that the cooler is insulated enough that heat into the cooler is slower than heat into the ice pack.
freezing
New contributor
$endgroup$
I'm looking at buying some ice packs for my cooler. Looking a specific brand they have several "models", each with a different freezing temperature. Why does this matter?
Let's say I have one pack that freezes at 5 °F (-15 °C) and another that freezes at 34 °F (1 °C). Let's also assume they are the same mass. Let's say I put both of these in my freezer that is at 0 °F (-18 °C) and leave them long enough that they both reach 0 °F (-18 °C). If I then put each of them in identical coolers, won't they have the same cooling capacity? One may cool faster than the other, but on a long enough timeline they'll both cool the cooler to the same temperature (assuming that the cooler is insulated enough that heat into the cooler is slower than heat into the ice pack.
freezing
freezing
New contributor
New contributor
edited 57 mins ago
Peter Mortensen
1,95311323
1,95311323
New contributor
asked 11 hours ago
tir38tir38
1183
1183
New contributor
New contributor
1
$begingroup$
The freezing point is useful, but I'd also want to know the heat capacity and latent heat of fusion.
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
Isn't 34 °F a typo? That temperature is above the freezing point of water at the common pressures.
$endgroup$
– Peter Mortensen
4 hours ago
add a comment |
1
$begingroup$
The freezing point is useful, but I'd also want to know the heat capacity and latent heat of fusion.
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
Isn't 34 °F a typo? That temperature is above the freezing point of water at the common pressures.
$endgroup$
– Peter Mortensen
4 hours ago
1
1
$begingroup$
The freezing point is useful, but I'd also want to know the heat capacity and latent heat of fusion.
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
The freezing point is useful, but I'd also want to know the heat capacity and latent heat of fusion.
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
Isn't 34 °F a typo? That temperature is above the freezing point of water at the common pressures.
$endgroup$
– Peter Mortensen
4 hours ago
$begingroup$
Isn't 34 °F a typo? That temperature is above the freezing point of water at the common pressures.
$endgroup$
– Peter Mortensen
4 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The properties of the cooling material are quite important to how it will interact with it's surroundings and exchange heat.
First, I'm going to address a misconception with the cooling capacity that you have brought up. Just because the two ice packs are brought to the same temperature, does not mean they will supply the same net cooling to the system. The thermal properties of the cooling packs is also very important.
For one, different substances will have a different heat capacity per unit mass (i.e. it takes more energy to cool 1 gram of water 1°C than it does to cool 1 gram of glass 1°C, all other factors equal). You also have to account for the latent heat of fusion; which is the amount of thermal energy required to melt the ice at the phase change.
Obviously this still doesn't explain why the melting point is important. That has to do with the latent heat of fusion, along with the desired behaviour of the ice pack. When the ice pack melts, it is taking more energy from the system without increasing temperature. This means that having the ice pack melt while keeping your cooler chilled is actually a relatively good thing, since it's extra heat capacity of the ice pack.
So for your examples of a 5°F melting point vs a 34°F melting point shows a good difference. If you wanted to keep the cooler below 34°F, you would want the ice pack that melts at 5°F, not at 34°F. That's because the ice pack that melts at 34°F is not able to take away the heat of fusion from the system, and only takes away heat due to the heat capacity. The heat of fusion represents a substantial amount of cooling capacity, so the melting temperature of your ice pack should be lower than your maximum acceptable temperature; if you want to get the most use out of the ice pack.
Other factors that might be important when selecting an ice pack are if you can have it frozen, or if you need a malleable gel bag to fit around whatever you are trying to cool. Sometimes efficiency takes a back seat to utility.
$endgroup$
add a comment |
$begingroup$
The freezing point is useful because while a substance is melting, its temperature doesn't change: the heat goes into causing the phase change from solid to liquid. The temperature won't rise until the substance has melted. So if you need the temperature in your cooler to stay at or below 5° F, then choose the pack rated at 5° F.
However, to choose a freezer pack I'd also want to know the heat capacity and latent heat of fusion. That information lets you calculate how much heat in total that the freezer pack can absorb.
$endgroup$
$begingroup$
Beat you by 4 seconds!
$endgroup$
– JMac
11 hours ago
$begingroup$
@JMac Oh well. :) Adding links is a little painful on the phone...
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
If I wrote my answer on the phone it would have looked a lot closer to yours. I get... carried away when it's easy to type.
$endgroup$
– JMac
11 hours ago
$begingroup$
Both very good answers!
$endgroup$
– tir38
11 hours ago
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
tir38 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469932%2fwhy-does-the-freezing-point-matter-when-picking-cooler-ice-packs%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The properties of the cooling material are quite important to how it will interact with it's surroundings and exchange heat.
First, I'm going to address a misconception with the cooling capacity that you have brought up. Just because the two ice packs are brought to the same temperature, does not mean they will supply the same net cooling to the system. The thermal properties of the cooling packs is also very important.
For one, different substances will have a different heat capacity per unit mass (i.e. it takes more energy to cool 1 gram of water 1°C than it does to cool 1 gram of glass 1°C, all other factors equal). You also have to account for the latent heat of fusion; which is the amount of thermal energy required to melt the ice at the phase change.
Obviously this still doesn't explain why the melting point is important. That has to do with the latent heat of fusion, along with the desired behaviour of the ice pack. When the ice pack melts, it is taking more energy from the system without increasing temperature. This means that having the ice pack melt while keeping your cooler chilled is actually a relatively good thing, since it's extra heat capacity of the ice pack.
So for your examples of a 5°F melting point vs a 34°F melting point shows a good difference. If you wanted to keep the cooler below 34°F, you would want the ice pack that melts at 5°F, not at 34°F. That's because the ice pack that melts at 34°F is not able to take away the heat of fusion from the system, and only takes away heat due to the heat capacity. The heat of fusion represents a substantial amount of cooling capacity, so the melting temperature of your ice pack should be lower than your maximum acceptable temperature; if you want to get the most use out of the ice pack.
Other factors that might be important when selecting an ice pack are if you can have it frozen, or if you need a malleable gel bag to fit around whatever you are trying to cool. Sometimes efficiency takes a back seat to utility.
$endgroup$
add a comment |
$begingroup$
The properties of the cooling material are quite important to how it will interact with it's surroundings and exchange heat.
First, I'm going to address a misconception with the cooling capacity that you have brought up. Just because the two ice packs are brought to the same temperature, does not mean they will supply the same net cooling to the system. The thermal properties of the cooling packs is also very important.
For one, different substances will have a different heat capacity per unit mass (i.e. it takes more energy to cool 1 gram of water 1°C than it does to cool 1 gram of glass 1°C, all other factors equal). You also have to account for the latent heat of fusion; which is the amount of thermal energy required to melt the ice at the phase change.
Obviously this still doesn't explain why the melting point is important. That has to do with the latent heat of fusion, along with the desired behaviour of the ice pack. When the ice pack melts, it is taking more energy from the system without increasing temperature. This means that having the ice pack melt while keeping your cooler chilled is actually a relatively good thing, since it's extra heat capacity of the ice pack.
So for your examples of a 5°F melting point vs a 34°F melting point shows a good difference. If you wanted to keep the cooler below 34°F, you would want the ice pack that melts at 5°F, not at 34°F. That's because the ice pack that melts at 34°F is not able to take away the heat of fusion from the system, and only takes away heat due to the heat capacity. The heat of fusion represents a substantial amount of cooling capacity, so the melting temperature of your ice pack should be lower than your maximum acceptable temperature; if you want to get the most use out of the ice pack.
Other factors that might be important when selecting an ice pack are if you can have it frozen, or if you need a malleable gel bag to fit around whatever you are trying to cool. Sometimes efficiency takes a back seat to utility.
$endgroup$
add a comment |
$begingroup$
The properties of the cooling material are quite important to how it will interact with it's surroundings and exchange heat.
First, I'm going to address a misconception with the cooling capacity that you have brought up. Just because the two ice packs are brought to the same temperature, does not mean they will supply the same net cooling to the system. The thermal properties of the cooling packs is also very important.
For one, different substances will have a different heat capacity per unit mass (i.e. it takes more energy to cool 1 gram of water 1°C than it does to cool 1 gram of glass 1°C, all other factors equal). You also have to account for the latent heat of fusion; which is the amount of thermal energy required to melt the ice at the phase change.
Obviously this still doesn't explain why the melting point is important. That has to do with the latent heat of fusion, along with the desired behaviour of the ice pack. When the ice pack melts, it is taking more energy from the system without increasing temperature. This means that having the ice pack melt while keeping your cooler chilled is actually a relatively good thing, since it's extra heat capacity of the ice pack.
So for your examples of a 5°F melting point vs a 34°F melting point shows a good difference. If you wanted to keep the cooler below 34°F, you would want the ice pack that melts at 5°F, not at 34°F. That's because the ice pack that melts at 34°F is not able to take away the heat of fusion from the system, and only takes away heat due to the heat capacity. The heat of fusion represents a substantial amount of cooling capacity, so the melting temperature of your ice pack should be lower than your maximum acceptable temperature; if you want to get the most use out of the ice pack.
Other factors that might be important when selecting an ice pack are if you can have it frozen, or if you need a malleable gel bag to fit around whatever you are trying to cool. Sometimes efficiency takes a back seat to utility.
$endgroup$
The properties of the cooling material are quite important to how it will interact with it's surroundings and exchange heat.
First, I'm going to address a misconception with the cooling capacity that you have brought up. Just because the two ice packs are brought to the same temperature, does not mean they will supply the same net cooling to the system. The thermal properties of the cooling packs is also very important.
For one, different substances will have a different heat capacity per unit mass (i.e. it takes more energy to cool 1 gram of water 1°C than it does to cool 1 gram of glass 1°C, all other factors equal). You also have to account for the latent heat of fusion; which is the amount of thermal energy required to melt the ice at the phase change.
Obviously this still doesn't explain why the melting point is important. That has to do with the latent heat of fusion, along with the desired behaviour of the ice pack. When the ice pack melts, it is taking more energy from the system without increasing temperature. This means that having the ice pack melt while keeping your cooler chilled is actually a relatively good thing, since it's extra heat capacity of the ice pack.
So for your examples of a 5°F melting point vs a 34°F melting point shows a good difference. If you wanted to keep the cooler below 34°F, you would want the ice pack that melts at 5°F, not at 34°F. That's because the ice pack that melts at 34°F is not able to take away the heat of fusion from the system, and only takes away heat due to the heat capacity. The heat of fusion represents a substantial amount of cooling capacity, so the melting temperature of your ice pack should be lower than your maximum acceptable temperature; if you want to get the most use out of the ice pack.
Other factors that might be important when selecting an ice pack are if you can have it frozen, or if you need a malleable gel bag to fit around whatever you are trying to cool. Sometimes efficiency takes a back seat to utility.
answered 11 hours ago
JMacJMac
8,88621833
8,88621833
add a comment |
add a comment |
$begingroup$
The freezing point is useful because while a substance is melting, its temperature doesn't change: the heat goes into causing the phase change from solid to liquid. The temperature won't rise until the substance has melted. So if you need the temperature in your cooler to stay at or below 5° F, then choose the pack rated at 5° F.
However, to choose a freezer pack I'd also want to know the heat capacity and latent heat of fusion. That information lets you calculate how much heat in total that the freezer pack can absorb.
$endgroup$
$begingroup$
Beat you by 4 seconds!
$endgroup$
– JMac
11 hours ago
$begingroup$
@JMac Oh well. :) Adding links is a little painful on the phone...
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
If I wrote my answer on the phone it would have looked a lot closer to yours. I get... carried away when it's easy to type.
$endgroup$
– JMac
11 hours ago
$begingroup$
Both very good answers!
$endgroup$
– tir38
11 hours ago
add a comment |
$begingroup$
The freezing point is useful because while a substance is melting, its temperature doesn't change: the heat goes into causing the phase change from solid to liquid. The temperature won't rise until the substance has melted. So if you need the temperature in your cooler to stay at or below 5° F, then choose the pack rated at 5° F.
However, to choose a freezer pack I'd also want to know the heat capacity and latent heat of fusion. That information lets you calculate how much heat in total that the freezer pack can absorb.
$endgroup$
$begingroup$
Beat you by 4 seconds!
$endgroup$
– JMac
11 hours ago
$begingroup$
@JMac Oh well. :) Adding links is a little painful on the phone...
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
If I wrote my answer on the phone it would have looked a lot closer to yours. I get... carried away when it's easy to type.
$endgroup$
– JMac
11 hours ago
$begingroup$
Both very good answers!
$endgroup$
– tir38
11 hours ago
add a comment |
$begingroup$
The freezing point is useful because while a substance is melting, its temperature doesn't change: the heat goes into causing the phase change from solid to liquid. The temperature won't rise until the substance has melted. So if you need the temperature in your cooler to stay at or below 5° F, then choose the pack rated at 5° F.
However, to choose a freezer pack I'd also want to know the heat capacity and latent heat of fusion. That information lets you calculate how much heat in total that the freezer pack can absorb.
$endgroup$
The freezing point is useful because while a substance is melting, its temperature doesn't change: the heat goes into causing the phase change from solid to liquid. The temperature won't rise until the substance has melted. So if you need the temperature in your cooler to stay at or below 5° F, then choose the pack rated at 5° F.
However, to choose a freezer pack I'd also want to know the heat capacity and latent heat of fusion. That information lets you calculate how much heat in total that the freezer pack can absorb.
answered 11 hours ago
PM 2RingPM 2Ring
3,40321023
3,40321023
$begingroup$
Beat you by 4 seconds!
$endgroup$
– JMac
11 hours ago
$begingroup$
@JMac Oh well. :) Adding links is a little painful on the phone...
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
If I wrote my answer on the phone it would have looked a lot closer to yours. I get... carried away when it's easy to type.
$endgroup$
– JMac
11 hours ago
$begingroup$
Both very good answers!
$endgroup$
– tir38
11 hours ago
add a comment |
$begingroup$
Beat you by 4 seconds!
$endgroup$
– JMac
11 hours ago
$begingroup$
@JMac Oh well. :) Adding links is a little painful on the phone...
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
If I wrote my answer on the phone it would have looked a lot closer to yours. I get... carried away when it's easy to type.
$endgroup$
– JMac
11 hours ago
$begingroup$
Both very good answers!
$endgroup$
– tir38
11 hours ago
$begingroup$
Beat you by 4 seconds!
$endgroup$
– JMac
11 hours ago
$begingroup$
Beat you by 4 seconds!
$endgroup$
– JMac
11 hours ago
$begingroup$
@JMac Oh well. :) Adding links is a little painful on the phone...
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
@JMac Oh well. :) Adding links is a little painful on the phone...
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
If I wrote my answer on the phone it would have looked a lot closer to yours. I get... carried away when it's easy to type.
$endgroup$
– JMac
11 hours ago
$begingroup$
If I wrote my answer on the phone it would have looked a lot closer to yours. I get... carried away when it's easy to type.
$endgroup$
– JMac
11 hours ago
$begingroup$
Both very good answers!
$endgroup$
– tir38
11 hours ago
$begingroup$
Both very good answers!
$endgroup$
– tir38
11 hours ago
add a comment |
tir38 is a new contributor. Be nice, and check out our Code of Conduct.
tir38 is a new contributor. Be nice, and check out our Code of Conduct.
tir38 is a new contributor. Be nice, and check out our Code of Conduct.
tir38 is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469932%2fwhy-does-the-freezing-point-matter-when-picking-cooler-ice-packs%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The freezing point is useful, but I'd also want to know the heat capacity and latent heat of fusion.
$endgroup$
– PM 2Ring
11 hours ago
$begingroup$
Isn't 34 °F a typo? That temperature is above the freezing point of water at the common pressures.
$endgroup$
– Peter Mortensen
4 hours ago