Intuition of generalized eigenvector.The intuition behind generalized eigenvectorsWhy is the eigenvector of a covariance matrix equal to a principal component?An intuitive approach to the Jordan Normal formIntuitive meaning of right and left eigenvectorConsider a linear operator $L$ and some polynomial of it, $L'=p(L)$. Show that the minimal polynomial of $L'$ has smaller degree than that of $L$.Why are the eigenvalues of a covariance matrix equal to the variance of its eigenvectors?How to determine the length of the Jordan chain associated to an eigenvector?Generalized eigenvectors for Jordan canonical form (and theory)Finding generalized eigenvectors from a Jordan formYet Another Question Regarding Jordan FormFinding ch. polynomial and Jordan normal form of $f$ knowing $dimker f=2$ and there are $a,b$ not in $ker f$ such that $f^2(a)=0, f(b)=b$

How to bake one texture for one mesh with multiple textures blender 2.8

What is this cable/device?

Is it safe to use olive oil to clean the ear wax?

250 Floor Tower

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

Store Credit Card Information in Password Manager?

Removing files under particular conditions (number of files, file age)

What should you do when eye contact makes your subordinate uncomfortable?

What is the evidence for the "tyranny of the majority problem" in a direct democracy context?

C++ debug/print custom type with GDB : the case of nlohmann json library

It grows, but water kills it

Delivering sarcasm

How to explain what's wrong with this application of the chain rule?

Freedom of speech and where it applies

Loading commands from file

Why did the EU agree to delay the Brexit deadline?

How can "mimic phobia" be cured or prevented?

2.8 Why are collections grayed out? How can I open them?

What if a revenant (monster) gains fire resistance?

Count the occurrence of each unique word in the file

Fear of getting stuck on one programming language / technology that is not used in my country

Yosemite Fire Rings - What to Expect?

How to indicate a cut out for a product window

Where does the bonus feat in the cleric starting package come from?



Intuition of generalized eigenvector.


The intuition behind generalized eigenvectorsWhy is the eigenvector of a covariance matrix equal to a principal component?An intuitive approach to the Jordan Normal formIntuitive meaning of right and left eigenvectorConsider a linear operator $L$ and some polynomial of it, $L'=p(L)$. Show that the minimal polynomial of $L'$ has smaller degree than that of $L$.Why are the eigenvalues of a covariance matrix equal to the variance of its eigenvectors?How to determine the length of the Jordan chain associated to an eigenvector?Generalized eigenvectors for Jordan canonical form (and theory)Finding generalized eigenvectors from a Jordan formYet Another Question Regarding Jordan FormFinding ch. polynomial and Jordan normal form of $f$ knowing $dimker f=2$ and there are $a,b$ not in $ker f$ such that $f^2(a)=0, f(b)=b$













1












$begingroup$


I was trying to get an intuitive grasp about what the the generalized eigenvector intuitively is. I read this nice answer, so I understand that in the basis given by the generalized eigenvectors, a jordan block is a linear map that is the sum of a stretch by a factor $lambda$ (eigenvalue associated to the block) and a "collapse", but I don't understand the conclusion on what these famous generalized eigenvectors actually are...




Thus the kernel of $(T−λI)k$ picks up all the Jordan blocks associated with eigenvalue $λ$ and, speaking somewhat loosely, each generalized eigenvector gets rescaled by $λ$, up to some "error" term generated by certain of the other generalized eigenvectors.




Maybe someone that actually understand the last argument can care to explain with some more detail? Thank you.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
    $endgroup$
    – Ted Shifrin
    1 hour ago















1












$begingroup$


I was trying to get an intuitive grasp about what the the generalized eigenvector intuitively is. I read this nice answer, so I understand that in the basis given by the generalized eigenvectors, a jordan block is a linear map that is the sum of a stretch by a factor $lambda$ (eigenvalue associated to the block) and a "collapse", but I don't understand the conclusion on what these famous generalized eigenvectors actually are...




Thus the kernel of $(T−λI)k$ picks up all the Jordan blocks associated with eigenvalue $λ$ and, speaking somewhat loosely, each generalized eigenvector gets rescaled by $λ$, up to some "error" term generated by certain of the other generalized eigenvectors.




Maybe someone that actually understand the last argument can care to explain with some more detail? Thank you.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
    $endgroup$
    – Ted Shifrin
    1 hour ago













1












1








1





$begingroup$


I was trying to get an intuitive grasp about what the the generalized eigenvector intuitively is. I read this nice answer, so I understand that in the basis given by the generalized eigenvectors, a jordan block is a linear map that is the sum of a stretch by a factor $lambda$ (eigenvalue associated to the block) and a "collapse", but I don't understand the conclusion on what these famous generalized eigenvectors actually are...




Thus the kernel of $(T−λI)k$ picks up all the Jordan blocks associated with eigenvalue $λ$ and, speaking somewhat loosely, each generalized eigenvector gets rescaled by $λ$, up to some "error" term generated by certain of the other generalized eigenvectors.




Maybe someone that actually understand the last argument can care to explain with some more detail? Thank you.










share|cite|improve this question











$endgroup$




I was trying to get an intuitive grasp about what the the generalized eigenvector intuitively is. I read this nice answer, so I understand that in the basis given by the generalized eigenvectors, a jordan block is a linear map that is the sum of a stretch by a factor $lambda$ (eigenvalue associated to the block) and a "collapse", but I don't understand the conclusion on what these famous generalized eigenvectors actually are...




Thus the kernel of $(T−λI)k$ picks up all the Jordan blocks associated with eigenvalue $λ$ and, speaking somewhat loosely, each generalized eigenvector gets rescaled by $λ$, up to some "error" term generated by certain of the other generalized eigenvectors.




Maybe someone that actually understand the last argument can care to explain with some more detail? Thank you.







linear-algebra intuition jordan-normal-form generalizedeigenvector






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Andrews

1,2761421




1,2761421










asked 2 hours ago









roi_saumonroi_saumon

62338




62338











  • $begingroup$
    I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
    $endgroup$
    – Ted Shifrin
    1 hour ago
















  • $begingroup$
    I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
    $endgroup$
    – Ted Shifrin
    1 hour ago















$begingroup$
I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
$endgroup$
– Ted Shifrin
1 hour ago




$begingroup$
I'm not sure where the "collapse" came from. I would talk about a generalized shear. In the case of a $2times 2$ block, it is literally a stretched shear.
$endgroup$
– Ted Shifrin
1 hour ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

Don't look for anything particularly deep or fancy here.



If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
$$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



    For instance, take the skew transformation given by the matrix
    $$
    beginbmatrix1&1\0&1endbmatrix
    $$

    It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



    However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



      $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.






      share|cite|improve this answer









      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159938%2fintuition-of-generalized-eigenvector%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        Don't look for anything particularly deep or fancy here.



        If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
        $$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
        Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



        Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



        Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.






        share|cite|improve this answer











        $endgroup$

















          2












          $begingroup$

          Don't look for anything particularly deep or fancy here.



          If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
          $$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
          Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



          Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



          Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.






          share|cite|improve this answer











          $endgroup$















            2












            2








            2





            $begingroup$

            Don't look for anything particularly deep or fancy here.



            If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
            $$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
            Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



            Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



            Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.






            share|cite|improve this answer











            $endgroup$



            Don't look for anything particularly deep or fancy here.



            If you have a calculation to do that involves some vectors and a linear operator $T$ that you apply perhaps to several of the vectors or more several times in sequence, then it can simplify the calculation if you represent the vectors in an eigenbasis -- since then we have
            $$ T(x_1,x_2,ldots,x_n) = (lambda_1x_1, lambda_2x_2, ldots, lambda_n x_n) $$
            Each component of the vector just gets multiplied by its associated eigenvalue and the different components don't interact with each other at all.



            Unfortunately, not all operators can be written in this nice form, because there may not be enough eigenvectors to combine into a basis. In that case the "next best thing" we can do is choosing a basis where the matrix of $T$ is in Jordan form. Then each component of $T(x_1,x_2,ldots,x_n)$ is either $lambda_i x_i$ or $lambda_i x_i + x_i+1$, which is still somewhat simpler than multiplication by an arbitrary matrix.



            Since this gives us some of what a basis consisting entirely of eigenvectors gives us, in terms of computational simplicity, if seems reasonable to describe them as a generalization of eigenvectors. Especially since in the case where we do have enough eigenvectors for an eigenbasis, generalized eigenvectors are the same as eigenvectors.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 1 hour ago

























            answered 2 hours ago









            Henning MakholmHenning Makholm

            242k17308550




            242k17308550





















                1












                $begingroup$

                I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



                For instance, take the skew transformation given by the matrix
                $$
                beginbmatrix1&1\0&1endbmatrix
                $$

                It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



                However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.






                share|cite|improve this answer









                $endgroup$

















                  1












                  $begingroup$

                  I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



                  For instance, take the skew transformation given by the matrix
                  $$
                  beginbmatrix1&1\0&1endbmatrix
                  $$

                  It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



                  However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.






                  share|cite|improve this answer









                  $endgroup$















                    1












                    1








                    1





                    $begingroup$

                    I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



                    For instance, take the skew transformation given by the matrix
                    $$
                    beginbmatrix1&1\0&1endbmatrix
                    $$

                    It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



                    However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.






                    share|cite|improve this answer









                    $endgroup$



                    I see generalized eigenvectors as an attempt to patch up the discrepancy between geometric multipicity and algebraic multiplicity of eigenvalues. This discrepancy is most easily observed as a result of skew transformations (and looking at Jordan normal forms, we see that skew transformations are in some sense at the core of any such discrepancy).



                    For instance, take the skew transformation given by the matrix
                    $$
                    beginbmatrix1&1\0&1endbmatrix
                    $$

                    It has eigenvalue $1$ with algebraic multiplicity $2$ (the characteristic polynomial is $(lambda - 1)^2$, which has a double root at $1$), but geometric multiplicity $1$ (the eigenspace has dimension $1$, as it just the $x$-axis).



                    However, the space of generalized eigenvectors is the entire plane, which is 2-dimensional, and more in line with the algebraic multiplicity of the eigenvalue.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 hours ago









                    ArthurArthur

                    119k7118202




                    119k7118202





















                        0












                        $begingroup$

                        Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



                        $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



                          $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



                            $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.






                            share|cite|improve this answer









                            $endgroup$



                            Consider the matrix $$A= beginbmatrix3 & 1 \ 0 & 3 endbmatrix$$. Obviously 3 is the only eigenvalue with "algebraic multiplicity" 2. It is also easy to find the eigenvectors $$beginbmatrix3 & 1 \ 0 & 3 endbmatrixbeginbmatrixx\ yendbmatrix= beginbmatrix3x+ y \ 3yendbmatrix= beginbmatrix3x \ 3y endbmatrix$$ so that we have 3x+ y= 3x and 3y= 3y. The first equation gives y= 0 and the second is satisfied for any x. So any eigenvector is of the form $$beginbmatrixx \ 0 endbmatrix= xbeginbmatrix1 \ 0 endbmatrix$$. So the subspace of all eigenvectors has dimension 1 (the geometric multiplicity is 1).



                            $$v= beginbmatrix0 \ 1 endbmatrix$$ is NOT an eigenvector: $$(A- 3I)v= beginbmatrix0 & 1 \ 0 & 0 endbmatrixbeginbmatrix 0 \ 1 endbmatrix= beginbmatrix1 \ 0endbmatrix$$, NOT the zero vector. But it does give the previous eigenvector so that applying A- 3I again would give the 0 vector it is a "generalized eigenvector.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 1 hour ago









                            user247327user247327

                            11.5k1516




                            11.5k1516



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159938%2fintuition-of-generalized-eigenvector%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                                Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

                                ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result