Approximating irrational number to rational number$lim_ntoinfty f(2^n)$ for some very slowly increasing function $f(n)$Hermite Interpolation of $e^x$. Strange behaviour when increasing the number of derivatives at interpolating points.Newton's Method, and approximating parameters for Bézier curves.Approximating Logs and Antilogs by handApproximating fractionsExistence of Irrational Number that has same $n$ digits of a given Rational Number.Finding Irrational Approximation for a given Rational Number.Atomic weights: rational or irrational?Does there exist infinitely many $mu$ which satisfy this:Approximating functions with rational functions

copy and scale one figure (wheel)

It grows, but water kills it

Is there a single word describing earning money through any means?

Store Credit Card Information in Password Manager?

Why did the Mercure fail?

Is it possible to have a strip of cold climate in the middle of a planet?

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

Closed-form expression for certain product

Why did the EU agree to delay the Brexit deadline?

Can I sign legal documents with a smiley face?

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

250 Floor Tower

Why is so much work done on numerical verification of the Riemann Hypothesis?

Loading commands from file

Non-trope happy ending?

Pre-mixing cryogenic fuels and using only one fuel tank

Why did the HMS Bounty go back to a time when whales are already rare?

Not using 's' for he/she/it

Count the occurrence of each unique word in the file

On a tidally locked planet, would time be quantized?

Drawing ramified coverings with tikz

Redundant comparison & "if" before assignment

Freedom of speech and where it applies

Is it safe to use olive oil to clean the ear wax?



Approximating irrational number to rational number


$lim_ntoinfty f(2^n)$ for some very slowly increasing function $f(n)$Hermite Interpolation of $e^x$. Strange behaviour when increasing the number of derivatives at interpolating points.Newton's Method, and approximating parameters for Bézier curves.Approximating Logs and Antilogs by handApproximating fractionsExistence of Irrational Number that has same $n$ digits of a given Rational Number.Finding Irrational Approximation for a given Rational Number.Atomic weights: rational or irrational?Does there exist infinitely many $mu$ which satisfy this:Approximating functions with rational functions













3












$begingroup$


I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.

I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.



In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.

What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.



Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?

Thank you in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
    $endgroup$
    – amsmath
    47 mins ago






  • 1




    $begingroup$
    The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
    $endgroup$
    – hardmath
    45 mins ago






  • 1




    $begingroup$
    You can take truncations of the continued fraction of that number. The first few of its values start like this.
    $endgroup$
    – user647486
    45 mins ago











  • $begingroup$
    try 82/149 ........
    $endgroup$
    – Will Jagy
    42 mins ago










  • $begingroup$
    Cool, a practical application of continued fractions. :)
    $endgroup$
    – Minus One-Twelfth
    33 mins ago















3












$begingroup$


I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.

I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.



In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.

What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.



Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?

Thank you in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
    $endgroup$
    – amsmath
    47 mins ago






  • 1




    $begingroup$
    The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
    $endgroup$
    – hardmath
    45 mins ago






  • 1




    $begingroup$
    You can take truncations of the continued fraction of that number. The first few of its values start like this.
    $endgroup$
    – user647486
    45 mins ago











  • $begingroup$
    try 82/149 ........
    $endgroup$
    – Will Jagy
    42 mins ago










  • $begingroup$
    Cool, a practical application of continued fractions. :)
    $endgroup$
    – Minus One-Twelfth
    33 mins ago













3












3








3





$begingroup$


I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.

I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.



In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.

What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.



Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?

Thank you in advance.










share|cite|improve this question











$endgroup$




I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.

I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.



In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.

What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.



Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?

Thank you in advance.







approximation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 44 mins ago









Rócherz

2,9863821




2,9863821










asked 1 hour ago









MrTanorusMrTanorus

1928




1928











  • $begingroup$
    I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
    $endgroup$
    – amsmath
    47 mins ago






  • 1




    $begingroup$
    The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
    $endgroup$
    – hardmath
    45 mins ago






  • 1




    $begingroup$
    You can take truncations of the continued fraction of that number. The first few of its values start like this.
    $endgroup$
    – user647486
    45 mins ago











  • $begingroup$
    try 82/149 ........
    $endgroup$
    – Will Jagy
    42 mins ago










  • $begingroup$
    Cool, a practical application of continued fractions. :)
    $endgroup$
    – Minus One-Twelfth
    33 mins ago
















  • $begingroup$
    I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
    $endgroup$
    – amsmath
    47 mins ago






  • 1




    $begingroup$
    The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
    $endgroup$
    – hardmath
    45 mins ago






  • 1




    $begingroup$
    You can take truncations of the continued fraction of that number. The first few of its values start like this.
    $endgroup$
    – user647486
    45 mins ago











  • $begingroup$
    try 82/149 ........
    $endgroup$
    – Will Jagy
    42 mins ago










  • $begingroup$
    Cool, a practical application of continued fractions. :)
    $endgroup$
    – Minus One-Twelfth
    33 mins ago















$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
47 mins ago




$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
47 mins ago




1




1




$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
45 mins ago




$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
45 mins ago




1




1




$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
45 mins ago





$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
45 mins ago













$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
42 mins ago




$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
42 mins ago












$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
33 mins ago




$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
33 mins ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
    $$
    0;1,1,4,2,6,1,color#C0010,143,3,dots
    $$

    The convergents for this continued fraction are
    $$
    left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
    $$

    As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thank you. A good addition to my answer.
      $endgroup$
      – Ross Millikan
      12 mins ago


















    1












    $begingroup$

    Running the extended Euclidean algorithm to find the continued fraction:



    $$beginarrayccx&q&a&b\
    hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
    1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

    The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $fraca_n$, with increasing accuracy.



    The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

    If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



    Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



    It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-irrational-number-to-rational-number%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.






          share|cite|improve this answer









          $endgroup$



          The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 39 mins ago









          Ross MillikanRoss Millikan

          300k24200374




          300k24200374





















              2












              $begingroup$

              The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
              $$
              0;1,1,4,2,6,1,color#C0010,143,3,dots
              $$

              The convergents for this continued fraction are
              $$
              left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
              $$

              As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                Thank you. A good addition to my answer.
                $endgroup$
                – Ross Millikan
                12 mins ago















              2












              $begingroup$

              The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
              $$
              0;1,1,4,2,6,1,color#C0010,143,3,dots
              $$

              The convergents for this continued fraction are
              $$
              left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
              $$

              As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.






              share|cite|improve this answer









              $endgroup$












              • $begingroup$
                Thank you. A good addition to my answer.
                $endgroup$
                – Ross Millikan
                12 mins ago













              2












              2








              2





              $begingroup$

              The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
              $$
              0;1,1,4,2,6,1,color#C0010,143,3,dots
              $$

              The convergents for this continued fraction are
              $$
              left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
              $$

              As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.






              share|cite|improve this answer









              $endgroup$



              The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
              $$
              0;1,1,4,2,6,1,color#C0010,143,3,dots
              $$

              The convergents for this continued fraction are
              $$
              left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
              $$

              As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 24 mins ago









              robjohnrobjohn

              269k27311638




              269k27311638











              • $begingroup$
                Thank you. A good addition to my answer.
                $endgroup$
                – Ross Millikan
                12 mins ago
















              • $begingroup$
                Thank you. A good addition to my answer.
                $endgroup$
                – Ross Millikan
                12 mins ago















              $begingroup$
              Thank you. A good addition to my answer.
              $endgroup$
              – Ross Millikan
              12 mins ago




              $begingroup$
              Thank you. A good addition to my answer.
              $endgroup$
              – Ross Millikan
              12 mins ago











              1












              $begingroup$

              Running the extended Euclidean algorithm to find the continued fraction:



              $$beginarrayccx&q&a&b\
              hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
              1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

              The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $fraca_n$, with increasing accuracy.



              The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

              If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



              Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



              It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                Running the extended Euclidean algorithm to find the continued fraction:



                $$beginarrayccx&q&a&b\
                hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
                1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

                The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $fraca_n$, with increasing accuracy.



                The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

                If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



                Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



                It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Running the extended Euclidean algorithm to find the continued fraction:



                  $$beginarrayccx&q&a&b\
                  hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
                  1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

                  The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $fraca_n$, with increasing accuracy.



                  The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

                  If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



                  Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



                  It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.






                  share|cite|improve this answer









                  $endgroup$



                  Running the extended Euclidean algorithm to find the continued fraction:



                  $$beginarrayccx&q&a&b\
                  hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
                  1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$

                  The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $fraca_n$, with increasing accuracy.



                  The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.

                  If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.



                  Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.



                  It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 13 mins ago









                  jmerryjmerry

                  15.8k1632




                  15.8k1632



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-irrational-number-to-rational-number%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

                      Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

                      Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery