prove that the matrix A is diagonalizableBlock Diagonal Matrix DiagonalizableNew proof about normal matrix is diagonalizable.Show that matrix $A$ is NOT diagonalizable.Prove a matrix is not diagonalizableHow to use inner products in C(n) to prove normal matrix is unitarily diagonalizable after knowing that normal matrix is diagonalizable?Is the Matrix Diagonalizable if $A^2=4I$Prove that $A$ is diagonalizable.Prove that a general matrix is diagonalizableDetermine $a$ to make matrix $A$ diagonalizableDiagonalizable block-diagonal matrix

1960's book about a plague that kills all white people

90's TV series where a boy goes to another dimension through portal near power lines

Where does SFDX store details about scratch orgs?

Doing something right before you need it - expression for this?

What is the word for reserving something for yourself before others do?

Is it possible to create light that imparts a greater proportion of its energy as momentum rather than heat?

How much of data wrangling is a data scientist's job?

Combinations of multiple lists

Is it unprofessional to ask if a job posting on GlassDoor is real?

Is it legal for company to use my work email to pretend I still work there?

A reference to a well-known characterization of scattered compact spaces

Python: return float 1.0 as int 1 but float 1.5 as float 1.5

How to show the equivalence between the regularized regression and their constraint formulas using KKT

Should I tell management that I intend to leave due to bad software development practices?

Why does Kotter return in Welcome Back Kotter

Fully-Firstable Anagram Sets

How can I make my BBEG immortal short of making them a Lich or Vampire?

Took a trip to a parallel universe, need help deciphering

Is delete *p an alternative to delete [] p?

When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?

Why can't we play rap on piano?

Emailing HOD to enhance faculty application

Is "remove commented out code" correct English?

What reasons are there for a Capitalist to oppose a 100% inheritance tax?



prove that the matrix A is diagonalizable


Block Diagonal Matrix DiagonalizableNew proof about normal matrix is diagonalizable.Show that matrix $A$ is NOT diagonalizable.Prove a matrix is not diagonalizableHow to use inner products in C(n) to prove normal matrix is unitarily diagonalizable after knowing that normal matrix is diagonalizable?Is the Matrix Diagonalizable if $A^2=4I$Prove that $A$ is diagonalizable.Prove that a general matrix is diagonalizableDetermine $a$ to make matrix $A$ diagonalizableDiagonalizable block-diagonal matrix













2












$begingroup$


We have :



$A^3-3A^2-A+3I_n = 0 $



how can i prove that A is diagonalizable .



I don't know how to do when A is written this way










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
    $endgroup$
    – José Carlos Santos
    4 hours ago










  • $begingroup$
    yes , you're right i edit my mistake
    $endgroup$
    – JoshuaK
    4 hours ago










  • $begingroup$
    What does "when $A$ is written this way" mean?
    $endgroup$
    – anomaly
    48 mins ago















2












$begingroup$


We have :



$A^3-3A^2-A+3I_n = 0 $



how can i prove that A is diagonalizable .



I don't know how to do when A is written this way










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
    $endgroup$
    – José Carlos Santos
    4 hours ago










  • $begingroup$
    yes , you're right i edit my mistake
    $endgroup$
    – JoshuaK
    4 hours ago










  • $begingroup$
    What does "when $A$ is written this way" mean?
    $endgroup$
    – anomaly
    48 mins ago













2












2








2





$begingroup$


We have :



$A^3-3A^2-A+3I_n = 0 $



how can i prove that A is diagonalizable .



I don't know how to do when A is written this way










share|cite|improve this question











$endgroup$




We have :



$A^3-3A^2-A+3I_n = 0 $



how can i prove that A is diagonalizable .



I don't know how to do when A is written this way







linear-algebra matrices eigenvalues-eigenvectors diagonalization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago







JoshuaK

















asked 4 hours ago









JoshuaKJoshuaK

264




264







  • 2




    $begingroup$
    Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
    $endgroup$
    – José Carlos Santos
    4 hours ago










  • $begingroup$
    yes , you're right i edit my mistake
    $endgroup$
    – JoshuaK
    4 hours ago










  • $begingroup$
    What does "when $A$ is written this way" mean?
    $endgroup$
    – anomaly
    48 mins ago












  • 2




    $begingroup$
    Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
    $endgroup$
    – José Carlos Santos
    4 hours ago










  • $begingroup$
    yes , you're right i edit my mistake
    $endgroup$
    – JoshuaK
    4 hours ago










  • $begingroup$
    What does "when $A$ is written this way" mean?
    $endgroup$
    – anomaly
    48 mins ago







2




2




$begingroup$
Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
$endgroup$
– José Carlos Santos
4 hours ago




$begingroup$
Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
$endgroup$
– José Carlos Santos
4 hours ago












$begingroup$
yes , you're right i edit my mistake
$endgroup$
– JoshuaK
4 hours ago




$begingroup$
yes , you're right i edit my mistake
$endgroup$
– JoshuaK
4 hours ago












$begingroup$
What does "when $A$ is written this way" mean?
$endgroup$
– anomaly
48 mins ago




$begingroup$
What does "when $A$ is written this way" mean?
$endgroup$
– anomaly
48 mins ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
    $endgroup$
    – Acccumulation
    2 hours ago


















2












$begingroup$

Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
      $endgroup$
      – JoshuaK
      4 hours ago











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3175144%2fprove-that-the-matrix-a-is-diagonalizable%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.






    share|cite|improve this answer









    $endgroup$








    • 2




      $begingroup$
      I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
      $endgroup$
      – Acccumulation
      2 hours ago















    3












    $begingroup$

    The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.






    share|cite|improve this answer









    $endgroup$








    • 2




      $begingroup$
      I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
      $endgroup$
      – Acccumulation
      2 hours ago













    3












    3








    3





    $begingroup$

    The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.






    share|cite|improve this answer









    $endgroup$



    The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 4 hours ago









    TheSilverDoeTheSilverDoe

    5,324215




    5,324215







    • 2




      $begingroup$
      I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
      $endgroup$
      – Acccumulation
      2 hours ago












    • 2




      $begingroup$
      I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
      $endgroup$
      – Acccumulation
      2 hours ago







    2




    2




    $begingroup$
    I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
    $endgroup$
    – Acccumulation
    2 hours ago




    $begingroup$
    I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
    $endgroup$
    – Acccumulation
    2 hours ago











    2












    $begingroup$

    Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.






        share|cite|improve this answer









        $endgroup$



        Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        EricEric

        513




        513





















            1












            $begingroup$

            We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
              $endgroup$
              – JoshuaK
              4 hours ago















            1












            $begingroup$

            We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
              $endgroup$
              – JoshuaK
              4 hours ago













            1












            1








            1





            $begingroup$

            We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.






            share|cite|improve this answer









            $endgroup$



            We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 4 hours ago









            GSoferGSofer

            8631313




            8631313











            • $begingroup$
              Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
              $endgroup$
              – JoshuaK
              4 hours ago
















            • $begingroup$
              Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
              $endgroup$
              – JoshuaK
              4 hours ago















            $begingroup$
            Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
            $endgroup$
            – JoshuaK
            4 hours ago




            $begingroup$
            Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
            $endgroup$
            – JoshuaK
            4 hours ago

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3175144%2fprove-that-the-matrix-a-is-diagonalizable%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

            Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

            Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery