prove that the matrix A is diagonalizableBlock Diagonal Matrix DiagonalizableNew proof about normal matrix is diagonalizable.Show that matrix $A$ is NOT diagonalizable.Prove a matrix is not diagonalizableHow to use inner products in C(n) to prove normal matrix is unitarily diagonalizable after knowing that normal matrix is diagonalizable?Is the Matrix Diagonalizable if $A^2=4I$Prove that $A$ is diagonalizable.Prove that a general matrix is diagonalizableDetermine $a$ to make matrix $A$ diagonalizableDiagonalizable block-diagonal matrix

Multi tool use
Multi tool use

1960's book about a plague that kills all white people

90's TV series where a boy goes to another dimension through portal near power lines

Where does SFDX store details about scratch orgs?

Doing something right before you need it - expression for this?

What is the word for reserving something for yourself before others do?

Is it possible to create light that imparts a greater proportion of its energy as momentum rather than heat?

How much of data wrangling is a data scientist's job?

Combinations of multiple lists

Is it unprofessional to ask if a job posting on GlassDoor is real?

Is it legal for company to use my work email to pretend I still work there?

A reference to a well-known characterization of scattered compact spaces

Python: return float 1.0 as int 1 but float 1.5 as float 1.5

How to show the equivalence between the regularized regression and their constraint formulas using KKT

Should I tell management that I intend to leave due to bad software development practices?

Why does Kotter return in Welcome Back Kotter

Fully-Firstable Anagram Sets

How can I make my BBEG immortal short of making them a Lich or Vampire?

Took a trip to a parallel universe, need help deciphering

Is delete *p an alternative to delete [] p?

When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?

Why can't we play rap on piano?

Emailing HOD to enhance faculty application

Is "remove commented out code" correct English?

What reasons are there for a Capitalist to oppose a 100% inheritance tax?



prove that the matrix A is diagonalizable


Block Diagonal Matrix DiagonalizableNew proof about normal matrix is diagonalizable.Show that matrix $A$ is NOT diagonalizable.Prove a matrix is not diagonalizableHow to use inner products in C(n) to prove normal matrix is unitarily diagonalizable after knowing that normal matrix is diagonalizable?Is the Matrix Diagonalizable if $A^2=4I$Prove that $A$ is diagonalizable.Prove that a general matrix is diagonalizableDetermine $a$ to make matrix $A$ diagonalizableDiagonalizable block-diagonal matrix













2












$begingroup$


We have :



$A^3-3A^2-A+3I_n = 0 $



how can i prove that A is diagonalizable .



I don't know how to do when A is written this way










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
    $endgroup$
    – José Carlos Santos
    4 hours ago










  • $begingroup$
    yes , you're right i edit my mistake
    $endgroup$
    – JoshuaK
    4 hours ago










  • $begingroup$
    What does "when $A$ is written this way" mean?
    $endgroup$
    – anomaly
    48 mins ago















2












$begingroup$


We have :



$A^3-3A^2-A+3I_n = 0 $



how can i prove that A is diagonalizable .



I don't know how to do when A is written this way










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
    $endgroup$
    – José Carlos Santos
    4 hours ago










  • $begingroup$
    yes , you're right i edit my mistake
    $endgroup$
    – JoshuaK
    4 hours ago










  • $begingroup$
    What does "when $A$ is written this way" mean?
    $endgroup$
    – anomaly
    48 mins ago













2












2








2





$begingroup$


We have :



$A^3-3A^2-A+3I_n = 0 $



how can i prove that A is diagonalizable .



I don't know how to do when A is written this way










share|cite|improve this question











$endgroup$




We have :



$A^3-3A^2-A+3I_n = 0 $



how can i prove that A is diagonalizable .



I don't know how to do when A is written this way







linear-algebra matrices eigenvalues-eigenvectors diagonalization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago







JoshuaK

















asked 4 hours ago









JoshuaKJoshuaK

264




264







  • 2




    $begingroup$
    Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
    $endgroup$
    – José Carlos Santos
    4 hours ago










  • $begingroup$
    yes , you're right i edit my mistake
    $endgroup$
    – JoshuaK
    4 hours ago










  • $begingroup$
    What does "when $A$ is written this way" mean?
    $endgroup$
    – anomaly
    48 mins ago












  • 2




    $begingroup$
    Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
    $endgroup$
    – José Carlos Santos
    4 hours ago










  • $begingroup$
    yes , you're right i edit my mistake
    $endgroup$
    – JoshuaK
    4 hours ago










  • $begingroup$
    What does "when $A$ is written this way" mean?
    $endgroup$
    – anomaly
    48 mins ago







2




2




$begingroup$
Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
$endgroup$
– José Carlos Santos
4 hours ago




$begingroup$
Note that if $A=operatornameId_n$, then $A^3-3A^2-A+3operatornameId_n=0$, in spite of the fact that the only root of the characteristic polynomial of $operatornameId_n$ has multiplicity $n$. So, no, you don't have to prove that all roots of the characteristic polynomial of $A$ have multiplicity $1$.
$endgroup$
– José Carlos Santos
4 hours ago












$begingroup$
yes , you're right i edit my mistake
$endgroup$
– JoshuaK
4 hours ago




$begingroup$
yes , you're right i edit my mistake
$endgroup$
– JoshuaK
4 hours ago












$begingroup$
What does "when $A$ is written this way" mean?
$endgroup$
– anomaly
48 mins ago




$begingroup$
What does "when $A$ is written this way" mean?
$endgroup$
– anomaly
48 mins ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
    $endgroup$
    – Acccumulation
    2 hours ago


















2












$begingroup$

Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
      $endgroup$
      – JoshuaK
      4 hours ago











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3175144%2fprove-that-the-matrix-a-is-diagonalizable%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.






    share|cite|improve this answer









    $endgroup$








    • 2




      $begingroup$
      I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
      $endgroup$
      – Acccumulation
      2 hours ago















    3












    $begingroup$

    The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.






    share|cite|improve this answer









    $endgroup$








    • 2




      $begingroup$
      I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
      $endgroup$
      – Acccumulation
      2 hours ago













    3












    3








    3





    $begingroup$

    The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.






    share|cite|improve this answer









    $endgroup$



    The polynomial $P(X)=X^3-3X^2-X+3 = (X-1)(X-3)(X+1)$ has three distincts real roots and you have $P(A)=0$, so $A$ is diagonalizable over $mathbbR$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 4 hours ago









    TheSilverDoeTheSilverDoe

    5,324215




    5,324215







    • 2




      $begingroup$
      I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
      $endgroup$
      – Acccumulation
      2 hours ago












    • 2




      $begingroup$
      I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
      $endgroup$
      – Acccumulation
      2 hours ago







    2




    2




    $begingroup$
    I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
    $endgroup$
    – Acccumulation
    2 hours ago




    $begingroup$
    I think you should provide more explanation for how you go from "three [distinct] real roots" to "diagonalizable".
    $endgroup$
    – Acccumulation
    2 hours ago











    2












    $begingroup$

    Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.






        share|cite|improve this answer









        $endgroup$



        Solving a simpler example, $A-cI_n=0$, it's clear that $a_(i,i)=c$ because $a_(i,j) - cI_(i,j) = 0$ for all $i,j in 1,dots,n$. From here, a slightly more complicated example is $(A-cI)(A-dI)=0$ forces two conditions (for diagonal elements of $A$ and off-diagonal elements of $A$) that will lead you to a solution for general matrix polynomials.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 4 hours ago









        EricEric

        513




        513





















            1












            $begingroup$

            We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
              $endgroup$
              – JoshuaK
              4 hours ago















            1












            $begingroup$

            We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
              $endgroup$
              – JoshuaK
              4 hours ago













            1












            1








            1





            $begingroup$

            We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.






            share|cite|improve this answer









            $endgroup$



            We know that the minimal polynomial divides any polynomial that $A$ is a root of. It's pretty easy to guess that $x=1$ is a root, and using polynomial division you can find that the other two roots are $x=-1, x=3$. Since all the roots are of multiplicity $1$, all of the roots of the minimal polynomial are of multiplicity $1$, and so $A$ is diagonalizable.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 4 hours ago









            GSoferGSofer

            8631313




            8631313











            • $begingroup$
              Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
              $endgroup$
              – JoshuaK
              4 hours ago
















            • $begingroup$
              Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
              $endgroup$
              – JoshuaK
              4 hours ago















            $begingroup$
            Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
            $endgroup$
            – JoshuaK
            4 hours ago




            $begingroup$
            Nice way to do it using this prorpiety , i was wondering what can i say about A being inversible
            $endgroup$
            – JoshuaK
            4 hours ago

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3175144%2fprove-that-the-matrix-a-is-diagonalizable%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            JQXIeyAjkcuYosRiQJ sS2H4i G77giJ,5B eNS VChWRb1QyvL3r k6 LFn8bk,KVil7N
            z5FIBEjKbjNeMEZwRC5qG9ZdZiJ x,5bHdcZJh5,xcmXEWG3WoxFx,zoz6Ad,TeqNJVrJB,5rzmoR1Dy

            Popular posts from this blog

            Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

            Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

            ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result