How to aggregate face embeddings of all photos of the same person?How to mitigate the hierarchical error propagation in tree-structured classificationSupport Vector Classification kernels ‘linear’, ‘poly’, ‘rbf’ has all same scoreHow can I know how to interpret the output coefficients (`coefs_`) from the model sklearn.svm.LinearSVC()?I trained my data and obtained a training score of 0.957. Why can't I get the data to provide a prediction even against the same training data?The effect of all zero value as the input of SVMHow to tune the hyper-parameters of an estimator in Orange ToolHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I interpret the length-scale parameter of the RBF kernel?Is the prediction algorithm absolutely the same for all linear classifiers?How to choose the support vectors after minimizing the objective function?

Is it idiomatic to construct against `this`

Function pointer with named arguments?

Critique of timeline aesthetic

Can SQL Server create collisions in system generated constraint names?

Why must Chinese maps be obfuscated?

Why do games have consumables?

How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?

Mistake in years of experience in resume?

Can someone publish a story that happened to you?

Which big number is bigger?

What is causing the white spot to appear in some of my pictures

What are the steps to solving this definite integral?

Don’t seats that recline flat defeat the purpose of having seatbelts?

Aliens crash on Earth and go into stasis to wait for technology to fix their ship

"The cow" OR "a cow" OR "cows" in this context

Contradiction proof for inequality of P and NP?

Dynamic SOQL query relationship with field visibility for Users

acheter à, to mean both "from" and "for"?

Is there really no use for MD5 anymore?

If a planet has 3 moons, is it possible to have triple Full/New Moons at once?

Is the claim "Employers won't employ people with no 'social media presence'" realistic?

How does Captain America channel this power?

Was there a shared-world project before "Thieves World"?

Rivers without rain



How to aggregate face embeddings of all photos of the same person?


How to mitigate the hierarchical error propagation in tree-structured classificationSupport Vector Classification kernels ‘linear’, ‘poly’, ‘rbf’ has all same scoreHow can I know how to interpret the output coefficients (`coefs_`) from the model sklearn.svm.LinearSVC()?I trained my data and obtained a training score of 0.957. Why can't I get the data to provide a prediction even against the same training data?The effect of all zero value as the input of SVMHow to tune the hyper-parameters of an estimator in Orange ToolHow to quantify the performance of the classifier (multi-class SVM) using the test data?How do I interpret the length-scale parameter of the RBF kernel?Is the prediction algorithm absolutely the same for all linear classifiers?How to choose the support vectors after minimizing the objective function?













1












$begingroup$


I am classifying about 3000 thousand people's faces using FaceNet. Each person has about 100 photos.



FaceNet first calculates a face embedding ( a feature vector) for each photo. So each person has 100 face embeddings.



What I want to do is aggregate the face embedding of each person into one. What is the best way of doing this?



I have tried to use mean method. But I am not sure whether this is recommended way.



--
The reason I want this is because using a single SVM as classifier for 3000 labels is very slow. (I took 50+ hours and about 250G memory and it still won't finish training). So I need to divide the training data into subsets, and use multiple SVCs to get first level of results. Then I uses the aggregated face-embedding of each person and closest distance to get second level result.










share|improve this question









$endgroup$




bumped to the homepage by Community 48 secs ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    1












    $begingroup$


    I am classifying about 3000 thousand people's faces using FaceNet. Each person has about 100 photos.



    FaceNet first calculates a face embedding ( a feature vector) for each photo. So each person has 100 face embeddings.



    What I want to do is aggregate the face embedding of each person into one. What is the best way of doing this?



    I have tried to use mean method. But I am not sure whether this is recommended way.



    --
    The reason I want this is because using a single SVM as classifier for 3000 labels is very slow. (I took 50+ hours and about 250G memory and it still won't finish training). So I need to divide the training data into subsets, and use multiple SVCs to get first level of results. Then I uses the aggregated face-embedding of each person and closest distance to get second level result.










    share|improve this question









    $endgroup$




    bumped to the homepage by Community 48 secs ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      1












      1








      1





      $begingroup$


      I am classifying about 3000 thousand people's faces using FaceNet. Each person has about 100 photos.



      FaceNet first calculates a face embedding ( a feature vector) for each photo. So each person has 100 face embeddings.



      What I want to do is aggregate the face embedding of each person into one. What is the best way of doing this?



      I have tried to use mean method. But I am not sure whether this is recommended way.



      --
      The reason I want this is because using a single SVM as classifier for 3000 labels is very slow. (I took 50+ hours and about 250G memory and it still won't finish training). So I need to divide the training data into subsets, and use multiple SVCs to get first level of results. Then I uses the aggregated face-embedding of each person and closest distance to get second level result.










      share|improve this question









      $endgroup$




      I am classifying about 3000 thousand people's faces using FaceNet. Each person has about 100 photos.



      FaceNet first calculates a face embedding ( a feature vector) for each photo. So each person has 100 face embeddings.



      What I want to do is aggregate the face embedding of each person into one. What is the best way of doing this?



      I have tried to use mean method. But I am not sure whether this is recommended way.



      --
      The reason I want this is because using a single SVM as classifier for 3000 labels is very slow. (I took 50+ hours and about 250G memory and it still won't finish training). So I need to divide the training data into subsets, and use multiple SVCs to get first level of results. Then I uses the aggregated face-embedding of each person and closest distance to get second level result.







      svm






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 26 '18 at 20:58









      user8328365user8328365

      62




      62





      bumped to the homepage by Community 48 secs ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 48 secs ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          This question is the first I've heard of FaceNet, but I don't think that the right solution to the question is to aggregate the face embeddings but to ask why you're using an SVM to classify the embeddings. Importantly, many SVM implementations of multiclass classification use a one-vs-rest method to train the classifiers -- if you're using a one-vs-rest implementation with 3000 labels, I suspect that this is the reason your training is taking so long.



          You should look into how your implementation is training the classifier. Additionally, How large is your embedding size?






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thanks for the info. My intended application is face identification: given a face image, identify whose face it belongs out of 3000 people. I googled one-vs-all and one-vs-one classifier, it seems only one-vs-all classifier will fit this need. I guess the other implementation (one-vs-one) is for face authentication only? (check whehter the face is who it claim to be). My embedding size is 512.
            $endgroup$
            – user8328365
            Nov 28 '18 at 6:30











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f41714%2fhow-to-aggregate-face-embeddings-of-all-photos-of-the-same-person%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          This question is the first I've heard of FaceNet, but I don't think that the right solution to the question is to aggregate the face embeddings but to ask why you're using an SVM to classify the embeddings. Importantly, many SVM implementations of multiclass classification use a one-vs-rest method to train the classifiers -- if you're using a one-vs-rest implementation with 3000 labels, I suspect that this is the reason your training is taking so long.



          You should look into how your implementation is training the classifier. Additionally, How large is your embedding size?






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thanks for the info. My intended application is face identification: given a face image, identify whose face it belongs out of 3000 people. I googled one-vs-all and one-vs-one classifier, it seems only one-vs-all classifier will fit this need. I guess the other implementation (one-vs-one) is for face authentication only? (check whehter the face is who it claim to be). My embedding size is 512.
            $endgroup$
            – user8328365
            Nov 28 '18 at 6:30















          0












          $begingroup$

          This question is the first I've heard of FaceNet, but I don't think that the right solution to the question is to aggregate the face embeddings but to ask why you're using an SVM to classify the embeddings. Importantly, many SVM implementations of multiclass classification use a one-vs-rest method to train the classifiers -- if you're using a one-vs-rest implementation with 3000 labels, I suspect that this is the reason your training is taking so long.



          You should look into how your implementation is training the classifier. Additionally, How large is your embedding size?






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thanks for the info. My intended application is face identification: given a face image, identify whose face it belongs out of 3000 people. I googled one-vs-all and one-vs-one classifier, it seems only one-vs-all classifier will fit this need. I guess the other implementation (one-vs-one) is for face authentication only? (check whehter the face is who it claim to be). My embedding size is 512.
            $endgroup$
            – user8328365
            Nov 28 '18 at 6:30













          0












          0








          0





          $begingroup$

          This question is the first I've heard of FaceNet, but I don't think that the right solution to the question is to aggregate the face embeddings but to ask why you're using an SVM to classify the embeddings. Importantly, many SVM implementations of multiclass classification use a one-vs-rest method to train the classifiers -- if you're using a one-vs-rest implementation with 3000 labels, I suspect that this is the reason your training is taking so long.



          You should look into how your implementation is training the classifier. Additionally, How large is your embedding size?






          share|improve this answer









          $endgroup$



          This question is the first I've heard of FaceNet, but I don't think that the right solution to the question is to aggregate the face embeddings but to ask why you're using an SVM to classify the embeddings. Importantly, many SVM implementations of multiclass classification use a one-vs-rest method to train the classifiers -- if you're using a one-vs-rest implementation with 3000 labels, I suspect that this is the reason your training is taking so long.



          You should look into how your implementation is training the classifier. Additionally, How large is your embedding size?







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 27 '18 at 2:46









          MatthewMatthew

          57410




          57410











          • $begingroup$
            Thanks for the info. My intended application is face identification: given a face image, identify whose face it belongs out of 3000 people. I googled one-vs-all and one-vs-one classifier, it seems only one-vs-all classifier will fit this need. I guess the other implementation (one-vs-one) is for face authentication only? (check whehter the face is who it claim to be). My embedding size is 512.
            $endgroup$
            – user8328365
            Nov 28 '18 at 6:30
















          • $begingroup$
            Thanks for the info. My intended application is face identification: given a face image, identify whose face it belongs out of 3000 people. I googled one-vs-all and one-vs-one classifier, it seems only one-vs-all classifier will fit this need. I guess the other implementation (one-vs-one) is for face authentication only? (check whehter the face is who it claim to be). My embedding size is 512.
            $endgroup$
            – user8328365
            Nov 28 '18 at 6:30















          $begingroup$
          Thanks for the info. My intended application is face identification: given a face image, identify whose face it belongs out of 3000 people. I googled one-vs-all and one-vs-one classifier, it seems only one-vs-all classifier will fit this need. I guess the other implementation (one-vs-one) is for face authentication only? (check whehter the face is who it claim to be). My embedding size is 512.
          $endgroup$
          – user8328365
          Nov 28 '18 at 6:30




          $begingroup$
          Thanks for the info. My intended application is face identification: given a face image, identify whose face it belongs out of 3000 people. I googled one-vs-all and one-vs-one classifier, it seems only one-vs-all classifier will fit this need. I guess the other implementation (one-vs-one) is for face authentication only? (check whehter the face is who it claim to be). My embedding size is 512.
          $endgroup$
          – user8328365
          Nov 28 '18 at 6:30

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f41714%2fhow-to-aggregate-face-embeddings-of-all-photos-of-the-same-person%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

          Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп

          ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result