Bayes factor vs P value Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraWhen should I be worried about the Jeffreys-Lindley paradox in Bayesian model choice?Bayesian analysis and Lindley's paradox?Do Bayes factors require multiple comparison correction?When does it make sense to reject/accept an hypothesis?Why are 0.05 < p < 0.95 results called false positives?Marginal Likelihoods for Bayes Factors with Multiple Discrete HypothesisIs p-value essentially useless and dangerous to use?Are smaller p-values more convincing?Interpreting Granger Causality F-testBayes factor (B) vs p-values: sensitive (H0/H1) vs insensitive dataWald test and LRT arriving at different conclusionsCompute Bayesian Probability

How to not starve gigantic beasts

Is Electric Central Heating worth it if using Solar Panels?

Israeli soda type drink

Raising a bilingual kid. When should we introduce the majority language?

With indentation set to `0em`, when using a line break, there is still an indentation of a size of a space

As an international instructor, should I openly talk about my accent?

Are there moral objections to a life motivated purely by money? How to sway a person from this lifestyle?

I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?

Is it acceptable to use working hours to read general interest books?

Expansion//Explosion and Siren Stormtamer

Does Feeblemind produce an ongoing magical effect that can be dispelled?

What’s with the clanks in Endgame?

Why did Israel vote against lifting the American embargo on Cuba?

"Rubric" as meaning "signature" or "personal mark" -- is this accepted usage?

"Whatever a Russian does, they end up making the Kalashnikov gun"? Are there any similar proverbs in English?

Holes in ElementMesh with ToElementMesh of ImplicitRegion

Could Neutrino technically as side-effect, incentivize centralization of the bitcoin network?

How to use @AuraEnabled base class method in Lightning Component?

Why isn't everyone flabbergasted about Bran's "gift"?

Multiple options vs single option UI

Multiple fireplaces in an apartment building?

Is Diceware more secure than a long passphrase?

How to get even lighting when using flash for group photos near wall?

How would this chord from "Rocket Man" be analyzed?



Bayes factor vs P value



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraWhen should I be worried about the Jeffreys-Lindley paradox in Bayesian model choice?Bayesian analysis and Lindley's paradox?Do Bayes factors require multiple comparison correction?When does it make sense to reject/accept an hypothesis?Why are 0.05 < p < 0.95 results called false positives?Marginal Likelihoods for Bayes Factors with Multiple Discrete HypothesisIs p-value essentially useless and dangerous to use?Are smaller p-values more convincing?Interpreting Granger Causality F-testBayes factor (B) vs p-values: sensitive (H0/H1) vs insensitive dataWald test and LRT arriving at different conclusionsCompute Bayesian Probability



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


I am trying to understand Bayes Factor (BF). I believe they are like likelihood ratio of 2 hypotheses. So if BF is 5, it means H1 is 5 times more likely than H0. And value of 3-10 indicates moderate evidence, while >10 indicates strong evidence.



However, for P-value, traditionally 0.05 is taken as cut-off. At this P value, H1/H0 likelihood should be 95/5 or 19.



So why a cut-off of >3 is taken for BF while a cut-off of >19 is taken for P values? These values are not anywhere close either.



I may be missing something very basic since I am a beginner in this area.










share|cite|improve this question











$endgroup$


















    3












    $begingroup$


    I am trying to understand Bayes Factor (BF). I believe they are like likelihood ratio of 2 hypotheses. So if BF is 5, it means H1 is 5 times more likely than H0. And value of 3-10 indicates moderate evidence, while >10 indicates strong evidence.



    However, for P-value, traditionally 0.05 is taken as cut-off. At this P value, H1/H0 likelihood should be 95/5 or 19.



    So why a cut-off of >3 is taken for BF while a cut-off of >19 is taken for P values? These values are not anywhere close either.



    I may be missing something very basic since I am a beginner in this area.










    share|cite|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I am trying to understand Bayes Factor (BF). I believe they are like likelihood ratio of 2 hypotheses. So if BF is 5, it means H1 is 5 times more likely than H0. And value of 3-10 indicates moderate evidence, while >10 indicates strong evidence.



      However, for P-value, traditionally 0.05 is taken as cut-off. At this P value, H1/H0 likelihood should be 95/5 or 19.



      So why a cut-off of >3 is taken for BF while a cut-off of >19 is taken for P values? These values are not anywhere close either.



      I may be missing something very basic since I am a beginner in this area.










      share|cite|improve this question











      $endgroup$




      I am trying to understand Bayes Factor (BF). I believe they are like likelihood ratio of 2 hypotheses. So if BF is 5, it means H1 is 5 times more likely than H0. And value of 3-10 indicates moderate evidence, while >10 indicates strong evidence.



      However, for P-value, traditionally 0.05 is taken as cut-off. At this P value, H1/H0 likelihood should be 95/5 or 19.



      So why a cut-off of >3 is taken for BF while a cut-off of >19 is taken for P values? These values are not anywhere close either.



      I may be missing something very basic since I am a beginner in this area.







      hypothesis-testing bayesian p-value






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago







      rnso

















      asked 3 hours ago









      rnsornso

      4,067103168




      4,067103168




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          A few things:



          The BF gives you evidence in favor of a hypothesis, while a frequentist hypothesis test gives you evidence against a (null) hypothesis. So it's kind of "apples to oranges."



          These two procedures, despite the difference in interpretations, may lead to different decisions. For example, a BF might reject while a frequentist hypothesis test doesn't, or vice versa. This problem is often referred to as the Jeffreys-Lindley's paradox. There have been many posts on this site about this; see e.g. here, and here.



          "At this P value, H1/H0 likelihood should be 95/5 or 19." No, this isn't true because, roughly $p(y mid H_1) neq 1- p(y mid H_0)$. Computing a p-value and performing a frequentist test, at a minimum, does not require you to have any idea about $p(y mid H_1)$. Also, p-values are often integrals/sums of densities/pmfs, while a BF doesn't integrate over the data sample space.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Thanks for your insight. However, if evidence in favor of a hypothesis is apple, I think evidence for alternate hypothesis can be inverted apple but not orange! Also, what would you say is approximate Bayes Factor value corresponding to P=0.05?
            $endgroup$
            – rnso
            1 hour ago



















          0












          $begingroup$

          The Bayes factor $B_01$ can be turned into a probability under equal weights as
          $$P_01=frac11+frac1large B_01$$but this does not make them comparable with a $p$-value since




          1. $P_01$ is a probability in the parameter space, not in the sampling space

          2. its value and range depend on the choice of the prior measure, they are thus relative rather than absolute

          3. both $B_01$ and $P_01$ contain a penalty for complexity (Occam's razor) by integrating out over the parameter space

          If you wish to consider a Bayesian equivalent to the $p$-value, the posterior predictive $p$-value (Meng, 1994) should be investigated
          $$Q_01=mathbb P(B_01(X)le B_01(x^textobs))$$
          where $x^textobs$ denotes the observation and $X$ is distributed from the posterior predictive
          $$Xsim int_Theta f(x|theta) pi(theta|x^textobs),textdtheta$$
          but this does not imply that the same "default" criteria for rejection and significance should apply to this object.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "65"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404933%2fbayes-factor-vs-p-value%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            A few things:



            The BF gives you evidence in favor of a hypothesis, while a frequentist hypothesis test gives you evidence against a (null) hypothesis. So it's kind of "apples to oranges."



            These two procedures, despite the difference in interpretations, may lead to different decisions. For example, a BF might reject while a frequentist hypothesis test doesn't, or vice versa. This problem is often referred to as the Jeffreys-Lindley's paradox. There have been many posts on this site about this; see e.g. here, and here.



            "At this P value, H1/H0 likelihood should be 95/5 or 19." No, this isn't true because, roughly $p(y mid H_1) neq 1- p(y mid H_0)$. Computing a p-value and performing a frequentist test, at a minimum, does not require you to have any idea about $p(y mid H_1)$. Also, p-values are often integrals/sums of densities/pmfs, while a BF doesn't integrate over the data sample space.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thanks for your insight. However, if evidence in favor of a hypothesis is apple, I think evidence for alternate hypothesis can be inverted apple but not orange! Also, what would you say is approximate Bayes Factor value corresponding to P=0.05?
              $endgroup$
              – rnso
              1 hour ago
















            3












            $begingroup$

            A few things:



            The BF gives you evidence in favor of a hypothesis, while a frequentist hypothesis test gives you evidence against a (null) hypothesis. So it's kind of "apples to oranges."



            These two procedures, despite the difference in interpretations, may lead to different decisions. For example, a BF might reject while a frequentist hypothesis test doesn't, or vice versa. This problem is often referred to as the Jeffreys-Lindley's paradox. There have been many posts on this site about this; see e.g. here, and here.



            "At this P value, H1/H0 likelihood should be 95/5 or 19." No, this isn't true because, roughly $p(y mid H_1) neq 1- p(y mid H_0)$. Computing a p-value and performing a frequentist test, at a minimum, does not require you to have any idea about $p(y mid H_1)$. Also, p-values are often integrals/sums of densities/pmfs, while a BF doesn't integrate over the data sample space.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thanks for your insight. However, if evidence in favor of a hypothesis is apple, I think evidence for alternate hypothesis can be inverted apple but not orange! Also, what would you say is approximate Bayes Factor value corresponding to P=0.05?
              $endgroup$
              – rnso
              1 hour ago














            3












            3








            3





            $begingroup$

            A few things:



            The BF gives you evidence in favor of a hypothesis, while a frequentist hypothesis test gives you evidence against a (null) hypothesis. So it's kind of "apples to oranges."



            These two procedures, despite the difference in interpretations, may lead to different decisions. For example, a BF might reject while a frequentist hypothesis test doesn't, or vice versa. This problem is often referred to as the Jeffreys-Lindley's paradox. There have been many posts on this site about this; see e.g. here, and here.



            "At this P value, H1/H0 likelihood should be 95/5 or 19." No, this isn't true because, roughly $p(y mid H_1) neq 1- p(y mid H_0)$. Computing a p-value and performing a frequentist test, at a minimum, does not require you to have any idea about $p(y mid H_1)$. Also, p-values are often integrals/sums of densities/pmfs, while a BF doesn't integrate over the data sample space.






            share|cite|improve this answer











            $endgroup$



            A few things:



            The BF gives you evidence in favor of a hypothesis, while a frequentist hypothesis test gives you evidence against a (null) hypothesis. So it's kind of "apples to oranges."



            These two procedures, despite the difference in interpretations, may lead to different decisions. For example, a BF might reject while a frequentist hypothesis test doesn't, or vice versa. This problem is often referred to as the Jeffreys-Lindley's paradox. There have been many posts on this site about this; see e.g. here, and here.



            "At this P value, H1/H0 likelihood should be 95/5 or 19." No, this isn't true because, roughly $p(y mid H_1) neq 1- p(y mid H_0)$. Computing a p-value and performing a frequentist test, at a minimum, does not require you to have any idea about $p(y mid H_1)$. Also, p-values are often integrals/sums of densities/pmfs, while a BF doesn't integrate over the data sample space.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 21 mins ago









            Xi'an

            59.8k897369




            59.8k897369










            answered 2 hours ago









            TaylorTaylor

            12.7k21946




            12.7k21946











            • $begingroup$
              Thanks for your insight. However, if evidence in favor of a hypothesis is apple, I think evidence for alternate hypothesis can be inverted apple but not orange! Also, what would you say is approximate Bayes Factor value corresponding to P=0.05?
              $endgroup$
              – rnso
              1 hour ago

















            • $begingroup$
              Thanks for your insight. However, if evidence in favor of a hypothesis is apple, I think evidence for alternate hypothesis can be inverted apple but not orange! Also, what would you say is approximate Bayes Factor value corresponding to P=0.05?
              $endgroup$
              – rnso
              1 hour ago
















            $begingroup$
            Thanks for your insight. However, if evidence in favor of a hypothesis is apple, I think evidence for alternate hypothesis can be inverted apple but not orange! Also, what would you say is approximate Bayes Factor value corresponding to P=0.05?
            $endgroup$
            – rnso
            1 hour ago





            $begingroup$
            Thanks for your insight. However, if evidence in favor of a hypothesis is apple, I think evidence for alternate hypothesis can be inverted apple but not orange! Also, what would you say is approximate Bayes Factor value corresponding to P=0.05?
            $endgroup$
            – rnso
            1 hour ago














            0












            $begingroup$

            The Bayes factor $B_01$ can be turned into a probability under equal weights as
            $$P_01=frac11+frac1large B_01$$but this does not make them comparable with a $p$-value since




            1. $P_01$ is a probability in the parameter space, not in the sampling space

            2. its value and range depend on the choice of the prior measure, they are thus relative rather than absolute

            3. both $B_01$ and $P_01$ contain a penalty for complexity (Occam's razor) by integrating out over the parameter space

            If you wish to consider a Bayesian equivalent to the $p$-value, the posterior predictive $p$-value (Meng, 1994) should be investigated
            $$Q_01=mathbb P(B_01(X)le B_01(x^textobs))$$
            where $x^textobs$ denotes the observation and $X$ is distributed from the posterior predictive
            $$Xsim int_Theta f(x|theta) pi(theta|x^textobs),textdtheta$$
            but this does not imply that the same "default" criteria for rejection and significance should apply to this object.






            share|cite|improve this answer









            $endgroup$

















              0












              $begingroup$

              The Bayes factor $B_01$ can be turned into a probability under equal weights as
              $$P_01=frac11+frac1large B_01$$but this does not make them comparable with a $p$-value since




              1. $P_01$ is a probability in the parameter space, not in the sampling space

              2. its value and range depend on the choice of the prior measure, they are thus relative rather than absolute

              3. both $B_01$ and $P_01$ contain a penalty for complexity (Occam's razor) by integrating out over the parameter space

              If you wish to consider a Bayesian equivalent to the $p$-value, the posterior predictive $p$-value (Meng, 1994) should be investigated
              $$Q_01=mathbb P(B_01(X)le B_01(x^textobs))$$
              where $x^textobs$ denotes the observation and $X$ is distributed from the posterior predictive
              $$Xsim int_Theta f(x|theta) pi(theta|x^textobs),textdtheta$$
              but this does not imply that the same "default" criteria for rejection and significance should apply to this object.






              share|cite|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                The Bayes factor $B_01$ can be turned into a probability under equal weights as
                $$P_01=frac11+frac1large B_01$$but this does not make them comparable with a $p$-value since




                1. $P_01$ is a probability in the parameter space, not in the sampling space

                2. its value and range depend on the choice of the prior measure, they are thus relative rather than absolute

                3. both $B_01$ and $P_01$ contain a penalty for complexity (Occam's razor) by integrating out over the parameter space

                If you wish to consider a Bayesian equivalent to the $p$-value, the posterior predictive $p$-value (Meng, 1994) should be investigated
                $$Q_01=mathbb P(B_01(X)le B_01(x^textobs))$$
                where $x^textobs$ denotes the observation and $X$ is distributed from the posterior predictive
                $$Xsim int_Theta f(x|theta) pi(theta|x^textobs),textdtheta$$
                but this does not imply that the same "default" criteria for rejection and significance should apply to this object.






                share|cite|improve this answer









                $endgroup$



                The Bayes factor $B_01$ can be turned into a probability under equal weights as
                $$P_01=frac11+frac1large B_01$$but this does not make them comparable with a $p$-value since




                1. $P_01$ is a probability in the parameter space, not in the sampling space

                2. its value and range depend on the choice of the prior measure, they are thus relative rather than absolute

                3. both $B_01$ and $P_01$ contain a penalty for complexity (Occam's razor) by integrating out over the parameter space

                If you wish to consider a Bayesian equivalent to the $p$-value, the posterior predictive $p$-value (Meng, 1994) should be investigated
                $$Q_01=mathbb P(B_01(X)le B_01(x^textobs))$$
                where $x^textobs$ denotes the observation and $X$ is distributed from the posterior predictive
                $$Xsim int_Theta f(x|theta) pi(theta|x^textobs),textdtheta$$
                but this does not imply that the same "default" criteria for rejection and significance should apply to this object.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 10 mins ago









                Xi'anXi'an

                59.8k897369




                59.8k897369



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404933%2fbayes-factor-vs-p-value%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Partai Komunis Tiongkok Daftar isi Kepemimpinan | Pranala luar | Referensi | Menu navigasidiperiksa1 perubahan tertundacpc.people.com.cnSitus resmiSurat kabar resmi"Why the Communist Party is alive, well and flourishing in China"0307-1235"Full text of Constitution of Communist Party of China"smengembangkannyas

                    ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 (SMOTE) The 2019 Stack Overflow Developer Survey Results Are InCan SMOTE be applied over sequence of words (sentences)?ValueError when doing validation with random forestsSMOTE and multi class oversamplingLogic behind SMOTE-NC?ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)SmoteBoost: Should SMOTE be ran individually for each iteration/tree in the boosting?solving multi-class imbalance classification using smote and OSSUsing SMOTE for Synthetic Data generation to improve performance on unbalanced dataproblem of entry format for a simple model in KerasSVM SMOTE fit_resample() function runs forever with no result