Holes in ElementMesh with ToElementMesh of ImplicitRegion Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?ElementMesh from ImplicitRegion cuts corners of regionLong running ToElementMesh with very “large” domainsProblem with MeshOrderAlteration to create a 2nd order ElementMeshToElementMesh[]3D FEM with holesElementMesh (rendering?) issueMaking good meshesElementMesh from Tetrahedron subdivisionElementMesh from ImplicitRegion cuts corners of regionToElementMesh of Region with HoleUneven distribution of nodes by ToElementMesh[]
What is it called when you ride around on your front wheel?
Can you stand up from being prone using Skirmisher outside of your turn?
Arriving in Atlanta after US Preclearance in Dublin. Will I go through TSA security in Atlanta to transfer to a connecting flight?
Why did Israel vote against lifting the American embargo on Cuba?
PIC mathematical operations weird problem
Retract an already submitted recommendation letter (written for an undergrad student)
I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?
Seek and ye shall find
Implementing 3DES algorithm in Java: is my code secure?
What’s with the clanks in Endgame?
Why does the Cisco show run command not show the full version, while the show version command does?
What is the least dense liquid under normal conditions?
Could Neutrino technically as side-effect, incentivize centralization of the bitcoin network?
Trumpet valves, lengths, and pitch
Why didn't the Space Shuttle bounce back into space as many times as possible so as to lose a lot of kinetic energy up there?
std::is_constructible on incomplete types
How to translate "red flag" into Spanish?
Why do games have consumables?
My admission is revoked after accepting the admission offer
What *exactly* is electrical current, voltage, and resistance?
How to not starve gigantic beasts
What is this word supposed to be?
Did the Roman Empire have penal colonies?
Is a 5 watt UHF/VHF handheld considered QRP?
Holes in ElementMesh with ToElementMesh of ImplicitRegion
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?ElementMesh from ImplicitRegion cuts corners of regionLong running ToElementMesh with very “large” domainsProblem with MeshOrderAlteration to create a 2nd order ElementMeshToElementMesh[]3D FEM with holesElementMesh (rendering?) issueMaking good meshesElementMesh from Tetrahedron subdivisionElementMesh from ImplicitRegion cuts corners of regionToElementMesh of Region with HoleUneven distribution of nodes by ToElementMesh[]
$begingroup$
I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh
using ImplicitRegion
and ToElementMesh
, but the result has holes.
Here is the cell (it's just a square),
cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
Graphics[Transparent, EdgeForm[Thick], cell]
and the function,
f[kx_, ky_, n_] :=
Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
0.12, 0., 0., 0.,
0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
0., 0.12, -0.23,
0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
0.12, -0.23,
0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
n]];
Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]
and what the region should look like,
isovalue = 1.29897233417072;
ContourPlot[f[x, y, 4], x, y [Element] cell,
Contours -> isovalue, ColorFunction -> GrayLevel,
PlotPoints -> 100]
This is what I have tried
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "Continuation"];
RegionPlot[reg]
The region is no more accurate when I decrease MaxCellMeasure
or MaxBoundaryCellMeasure
. I also tried the solution suggested here.
plotting finite-element-method mesh implicit
$endgroup$
add a comment |
$begingroup$
I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh
using ImplicitRegion
and ToElementMesh
, but the result has holes.
Here is the cell (it's just a square),
cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
Graphics[Transparent, EdgeForm[Thick], cell]
and the function,
f[kx_, ky_, n_] :=
Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
0.12, 0., 0., 0.,
0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
0., 0.12, -0.23,
0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
0.12, -0.23,
0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
n]];
Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]
and what the region should look like,
isovalue = 1.29897233417072;
ContourPlot[f[x, y, 4], x, y [Element] cell,
Contours -> isovalue, ColorFunction -> GrayLevel,
PlotPoints -> 100]
This is what I have tried
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "Continuation"];
RegionPlot[reg]
The region is no more accurate when I decrease MaxCellMeasure
or MaxBoundaryCellMeasure
. I also tried the solution suggested here.
plotting finite-element-method mesh implicit
$endgroup$
add a comment |
$begingroup$
I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh
using ImplicitRegion
and ToElementMesh
, but the result has holes.
Here is the cell (it's just a square),
cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
Graphics[Transparent, EdgeForm[Thick], cell]
and the function,
f[kx_, ky_, n_] :=
Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
0.12, 0., 0., 0.,
0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
0., 0.12, -0.23,
0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
0.12, -0.23,
0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
n]];
Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]
and what the region should look like,
isovalue = 1.29897233417072;
ContourPlot[f[x, y, 4], x, y [Element] cell,
Contours -> isovalue, ColorFunction -> GrayLevel,
PlotPoints -> 100]
This is what I have tried
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "Continuation"];
RegionPlot[reg]
The region is no more accurate when I decrease MaxCellMeasure
or MaxBoundaryCellMeasure
. I also tried the solution suggested here.
plotting finite-element-method mesh implicit
$endgroup$
I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh
using ImplicitRegion
and ToElementMesh
, but the result has holes.
Here is the cell (it's just a square),
cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
Graphics[Transparent, EdgeForm[Thick], cell]
and the function,
f[kx_, ky_, n_] :=
Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
0.12, 0., 0., 0.,
0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
0., 0.12, -0.23,
0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
0.12, -0.23,
0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
n]];
Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]
and what the region should look like,
isovalue = 1.29897233417072;
ContourPlot[f[x, y, 4], x, y [Element] cell,
Contours -> isovalue, ColorFunction -> GrayLevel,
PlotPoints -> 100]
This is what I have tried
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "Continuation"];
RegionPlot[reg]
The region is no more accurate when I decrease MaxCellMeasure
or MaxBoundaryCellMeasure
. I also tried the solution suggested here.
plotting finite-element-method mesh implicit
plotting finite-element-method mesh implicit
edited 44 mins ago
user21
21.1k55999
21.1k55999
asked 8 hours ago
jerjorgjerjorg
874
874
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I hope I interpreted your question correctly that you want a more accurate ElementMesh
representation of the region.
First we create a high quality Graphics
of the region of interest.
isovalue = 1.29897233417072;
(* Add some margins to plot range to get connected region. *)
tolerance = 0.05;
plot = ContourPlot[
f[x, y, 4],
x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
Contours -> isovalue,
ColorFunction -> GrayLevel,
(* We need high quality plot for ImageMesh later. *)
PlotPoints -> 200,
Frame -> None
]
Create MeshRegion
from Graphics
object.
mreg = ImageMesh[ColorNegate[plot]]
And convert it to ElementMesh
.
Needs["NDSolve`FEM`"]
mesh = ToElementMesh[mreg,"MeshOrder"->1]
(* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)
mesh["Wireframe"]
$endgroup$
add a comment |
$begingroup$
Another approach is:
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];
reg["Wireframe"]
One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196970%2fholes-in-elementmesh-with-toelementmesh-of-implicitregion%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I hope I interpreted your question correctly that you want a more accurate ElementMesh
representation of the region.
First we create a high quality Graphics
of the region of interest.
isovalue = 1.29897233417072;
(* Add some margins to plot range to get connected region. *)
tolerance = 0.05;
plot = ContourPlot[
f[x, y, 4],
x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
Contours -> isovalue,
ColorFunction -> GrayLevel,
(* We need high quality plot for ImageMesh later. *)
PlotPoints -> 200,
Frame -> None
]
Create MeshRegion
from Graphics
object.
mreg = ImageMesh[ColorNegate[plot]]
And convert it to ElementMesh
.
Needs["NDSolve`FEM`"]
mesh = ToElementMesh[mreg,"MeshOrder"->1]
(* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)
mesh["Wireframe"]
$endgroup$
add a comment |
$begingroup$
I hope I interpreted your question correctly that you want a more accurate ElementMesh
representation of the region.
First we create a high quality Graphics
of the region of interest.
isovalue = 1.29897233417072;
(* Add some margins to plot range to get connected region. *)
tolerance = 0.05;
plot = ContourPlot[
f[x, y, 4],
x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
Contours -> isovalue,
ColorFunction -> GrayLevel,
(* We need high quality plot for ImageMesh later. *)
PlotPoints -> 200,
Frame -> None
]
Create MeshRegion
from Graphics
object.
mreg = ImageMesh[ColorNegate[plot]]
And convert it to ElementMesh
.
Needs["NDSolve`FEM`"]
mesh = ToElementMesh[mreg,"MeshOrder"->1]
(* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)
mesh["Wireframe"]
$endgroup$
add a comment |
$begingroup$
I hope I interpreted your question correctly that you want a more accurate ElementMesh
representation of the region.
First we create a high quality Graphics
of the region of interest.
isovalue = 1.29897233417072;
(* Add some margins to plot range to get connected region. *)
tolerance = 0.05;
plot = ContourPlot[
f[x, y, 4],
x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
Contours -> isovalue,
ColorFunction -> GrayLevel,
(* We need high quality plot for ImageMesh later. *)
PlotPoints -> 200,
Frame -> None
]
Create MeshRegion
from Graphics
object.
mreg = ImageMesh[ColorNegate[plot]]
And convert it to ElementMesh
.
Needs["NDSolve`FEM`"]
mesh = ToElementMesh[mreg,"MeshOrder"->1]
(* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)
mesh["Wireframe"]
$endgroup$
I hope I interpreted your question correctly that you want a more accurate ElementMesh
representation of the region.
First we create a high quality Graphics
of the region of interest.
isovalue = 1.29897233417072;
(* Add some margins to plot range to get connected region. *)
tolerance = 0.05;
plot = ContourPlot[
f[x, y, 4],
x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
Contours -> isovalue,
ColorFunction -> GrayLevel,
(* We need high quality plot for ImageMesh later. *)
PlotPoints -> 200,
Frame -> None
]
Create MeshRegion
from Graphics
object.
mreg = ImageMesh[ColorNegate[plot]]
And convert it to ElementMesh
.
Needs["NDSolve`FEM`"]
mesh = ToElementMesh[mreg,"MeshOrder"->1]
(* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)
mesh["Wireframe"]
answered 1 hour ago
PintiPinti
3,95211037
3,95211037
add a comment |
add a comment |
$begingroup$
Another approach is:
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];
reg["Wireframe"]
One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.
$endgroup$
add a comment |
$begingroup$
Another approach is:
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];
reg["Wireframe"]
One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.
$endgroup$
add a comment |
$begingroup$
Another approach is:
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];
reg["Wireframe"]
One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.
$endgroup$
Another approach is:
reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];
reg["Wireframe"]
One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.
answered 30 mins ago
user21user21
21.1k55999
21.1k55999
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196970%2fholes-in-elementmesh-with-toelementmesh-of-implicitregion%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown