Using Rolle's theorem to show an equation has only one real root The Next CEO of Stack OverflowUsing the Intermediate Value Theorem and Rolle's theorem to determine number of rootsProve using Rolle's Theorem that an equation has exactly one real solution.Rolle's theorem prove polynomial has only 1 rootprove to have at least one real root by Rolle's theoremProve that $tan (x)=sin (x)+1$ has only one solution in $left(−frac π2,frac π2right)$Prove that the equation $x + cos(x) + e^x = 0$ has *exactly* one rootUsing Rolle's theorem and IVT, show that $x^4-7x^3+9=0$ has exactly $2$ roots.How to show that an equation has exactly two solutions?Proving the equation $4x^3+6x^2+5x=-7$ has has only one solution using Rolle's or Lagrange's theoremProve, without using Rolle's theorem, that a polynomial $f$ with $f'(a) = 0 = f'(b)$ for some $a < b$, has at most one root

What does "Its cash flow is deeply negative" mean?

Is French Guiana a (hard) EU border?

Axiom Schema vs Axiom

Can MTA send mail via a relay without being told so?

Yu-Gi-Oh cards in Python 3

Writing differences on a blackboard

A Man With a Stainless Steel Endoskeleton (like The Terminator) Fighting Cloaked Aliens Only He Can See

Is it possible to use a NPN BJT as switch, from single power source?

Can we say or write : "No, it'sn't"?

Are police here, aren't itthey?

How to avoid supervisors with prejudiced views?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

How to delete every two lines after 3rd lines in a file contains very large number of lines?

How many extra stops do monopods offer for tele photographs?

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

Bartok - Syncopation (1): Meaning of notes in between Grand Staff

Is it okay to majorly distort historical facts while writing a fiction story?

Rotate a column

Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?

Find non-case sensitive string in a mixed list of elements?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Using Rolle's theorem to show an equation has only one real root

Where do students learn to solve polynomial equations these days?



Using Rolle's theorem to show an equation has only one real root



The Next CEO of Stack OverflowUsing the Intermediate Value Theorem and Rolle's theorem to determine number of rootsProve using Rolle's Theorem that an equation has exactly one real solution.Rolle's theorem prove polynomial has only 1 rootprove to have at least one real root by Rolle's theoremProve that $tan (x)=sin (x)+1$ has only one solution in $left(−frac π2,frac π2right)$Prove that the equation $x + cos(x) + e^x = 0$ has *exactly* one rootUsing Rolle's theorem and IVT, show that $x^4-7x^3+9=0$ has exactly $2$ roots.How to show that an equation has exactly two solutions?Proving the equation $4x^3+6x^2+5x=-7$ has has only one solution using Rolle's or Lagrange's theoremProve, without using Rolle's theorem, that a polynomial $f$ with $f'(a) = 0 = f'(b)$ for some $a < b$, has at most one root










2












$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    55 secs ago
















2












$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    55 secs ago














2












2








2





$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$





Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?







calculus applications rolles-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 26 mins ago









Eevee Trainer

9,05731640




9,05731640










asked 34 mins ago









blue_eyed_...blue_eyed_...

3,30221755




3,30221755











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    55 secs ago

















  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    55 secs ago
















$begingroup$
It is $$exp(x)geq 1+x$$ for all real $x$
$endgroup$
– Dr. Sonnhard Graubner
55 secs ago





$begingroup$
It is $$exp(x)geq 1+x$$ for all real $x$
$endgroup$
– Dr. Sonnhard Graubner
55 secs ago











1 Answer
1






active

oldest

votes


















4












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    23 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    18 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    7 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    4 mins ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169097%2fusing-rolles-theorem-to-show-an-equation-has-only-one-real-root%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    23 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    18 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    7 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    4 mins ago















4












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    23 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    18 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    7 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    4 mins ago













4












4








4





$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$



Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 6 mins ago

























answered 28 mins ago









Eevee TrainerEevee Trainer

9,05731640




9,05731640











  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    23 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    18 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    7 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    4 mins ago
















  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – blue_eyed_...
    25 mins ago










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    23 mins ago







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – blue_eyed_...
    18 mins ago










  • $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    7 mins ago










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – blue_eyed_...
    4 mins ago















$begingroup$
I don't understand the second para.
$endgroup$
– blue_eyed_...
25 mins ago




$begingroup$
I don't understand the second para.
$endgroup$
– blue_eyed_...
25 mins ago












$begingroup$
We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
$endgroup$
– Eevee Trainer
23 mins ago





$begingroup$
We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
$endgroup$
– Eevee Trainer
23 mins ago





1




1




$begingroup$
Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
$endgroup$
– blue_eyed_...
18 mins ago




$begingroup$
Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
$endgroup$
– blue_eyed_...
18 mins ago












$begingroup$
Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
$endgroup$
– Eevee Trainer
7 mins ago




$begingroup$
Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
$endgroup$
– Eevee Trainer
7 mins ago












$begingroup$
With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
$endgroup$
– blue_eyed_...
4 mins ago




$begingroup$
With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
$endgroup$
– blue_eyed_...
4 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169097%2fusing-rolles-theorem-to-show-an-equation-has-only-one-real-root%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery