0-rank tensor vs vector in 1D The Next CEO of Stack OverflowHistory of Electromagnetic Field TensorAngular displacement and the displacement vectorIn field theory, why are some symmetry transformations applied to the field values while other act on the space that the fields are defined on?Possible confusion, the inertia of something yields a tensor? (trying to understand an example)What exactly is the Parity transformation? Parity in spherical coordinatesA fundamental question about tensors and vectorsIt is correct to say that a tensor is simply a multidimensional array of related quantities? But what about a tensor as a transformation?4-Vector DefinitionDoubts on covariant and contravariant vectors and on double tensorsZero order Tensor

How to avoid supervisors with prejudiced views?

Method for adding error messages to a dictionary given a key

TikZ: How to reverse arrow direction without switching start/end point?

A Man With a Stainless Steel Endoskeleton (like The Terminator) Fighting Cloaked Aliens Only He Can See

Won the lottery - how do I keep the money?

Is there a difference between "Fahrstuhl" and "Aufzug"

What happened in Rome, when the western empire "fell"?

How I can get glyphs from a fraktur font and use them as identifiers?

How many extra stops do monopods offer for tele photographs?

Does Germany produce more waste than the US?

Would a completely good Muggle be able to use a wand?

Can you be charged for obstruction for refusing to answer questions?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

Are police here, aren't itthey?

Why does standard notation not preserve intervals (visually)

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

The past simple of "gaslight" – "gaslighted" or "gaslit"?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

Do I need to write [sic] when a number is less than 10 but isn't written out?

Make solar eclipses exceedingly rare, but still have new moons

Running a General Election and the European Elections together

How to delete every two lines after 3rd lines in a file contains very large number of lines?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Bartok - Syncopation (1): Meaning of notes in between Grand Staff



0-rank tensor vs vector in 1D



The Next CEO of Stack OverflowHistory of Electromagnetic Field TensorAngular displacement and the displacement vectorIn field theory, why are some symmetry transformations applied to the field values while other act on the space that the fields are defined on?Possible confusion, the inertia of something yields a tensor? (trying to understand an example)What exactly is the Parity transformation? Parity in spherical coordinatesA fundamental question about tensors and vectorsIt is correct to say that a tensor is simply a multidimensional array of related quantities? But what about a tensor as a transformation?4-Vector DefinitionDoubts on covariant and contravariant vectors and on double tensorsZero order Tensor










7












$begingroup$


What is the difference between zero-rank tensor $x$ (scalar) and vector $[x]$ in 1D?



As far as I understand tensor is anything which can be measured and different measures can be transformed into each other. That is, there are different basises for looking at one object.



Is length a scalar (zero rank tensor)?
I think it is not.
ex.:



  • physical parameter: writing pen's length

  • tensor: $l$

  • length in inches: $[5.511811023622]$

  • length in centimeters: $[14]$

  • transformation law: 1cm = 2.54inch

so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    What is the difference between zero-rank tensor $x$ (scalar) and vector $[x]$ in 1D?



    As far as I understand tensor is anything which can be measured and different measures can be transformed into each other. That is, there are different basises for looking at one object.



    Is length a scalar (zero rank tensor)?
    I think it is not.
    ex.:



    • physical parameter: writing pen's length

    • tensor: $l$

    • length in inches: $[5.511811023622]$

    • length in centimeters: $[14]$

    • transformation law: 1cm = 2.54inch

    so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



    The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










    share|cite|improve this question











    $endgroup$














      7












      7








      7





      $begingroup$


      What is the difference between zero-rank tensor $x$ (scalar) and vector $[x]$ in 1D?



      As far as I understand tensor is anything which can be measured and different measures can be transformed into each other. That is, there are different basises for looking at one object.



      Is length a scalar (zero rank tensor)?
      I think it is not.
      ex.:



      • physical parameter: writing pen's length

      • tensor: $l$

      • length in inches: $[5.511811023622]$

      • length in centimeters: $[14]$

      • transformation law: 1cm = 2.54inch

      so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



      The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.










      share|cite|improve this question











      $endgroup$




      What is the difference between zero-rank tensor $x$ (scalar) and vector $[x]$ in 1D?



      As far as I understand tensor is anything which can be measured and different measures can be transformed into each other. That is, there are different basises for looking at one object.



      Is length a scalar (zero rank tensor)?
      I think it is not.
      ex.:



      • physical parameter: writing pen's length

      • tensor: $l$

      • length in inches: $[5.511811023622]$

      • length in centimeters: $[14]$

      • transformation law: 1cm = 2.54inch

      so $l$ is a scalar, but on the other hand it's a tensor of rank 1 since "physical parameter of length is invariant, only it's measures (in different units) are".



      The same example can be made with classical example of temperature (which is used as a primer of zero rank tensor most in any book) in C and K units. I'm confused.







      vectors coordinate-systems tensor-calculus linear-algebra






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 17 mins ago









      Qmechanic

      107k121981229




      107k121981229










      asked 10 hours ago









      coobitcoobit

      365110




      365110




















          2 Answers
          2






          active

          oldest

          votes


















          12












          $begingroup$

          “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



          The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



          But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



          Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



          Under any other transformation group, the distinction between scalars and vectors is similar.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            8 hours ago











          • $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            8 hours ago










          • $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            8 hours ago











          • $begingroup$
            @coobit there's a difference in what a mathematician and a physicist mean when they say "vector". A mathematician would just use "vector" to mean "an element of a vector space", where the vector space in question could be anything depending on context. In physics, "vector" almost always means "an element of the tangent space of some manifold", where the manifold in question depends on context (often Euclidean or Minkowski space). See also this question on math stack exchange
            $endgroup$
            – Carmeister
            4 hours ago


















          0












          $begingroup$

          First of all, I'll constrain the discussion assuming:



          1) Finite-dimensional vector spaces



          2) Real Vector spaces



          3) Talking just about contravariant tensors



          4) Physics which use the standard notion of Spacetime



          $$* * *$$



          To answer your question I need to talk a little bit about Tensors.



          I) The tensor object and pure mathematics:



          The precise answer to the question "What is a tensor?" is, by far:




          A tensor is a object of a vector space called Tensor Product.




          In order to this general statement become something that have some value to you, I would like you to think a little bit about vectors and their algebra : the linear algebra.



          I.1) What truly is a Vector?



          First of all, if you look on linear algebra texts, you'll rapidly realize that the answer to the question "What are vectors after all? Matrices? Arrows? Functions?" is:




          A vector is a element of a algebraic structure called vector space.




          So after the study of the definition of a vector space you can talk with all rigour in the world that a vector isn't a arrow or a matrix, but a element of a vector space.



          I.1.1) Some facts about vectors



          Consider then a vector formed by a linear combination of basis vectors:



          $$mathbfv = sum_j = 1^n v^jmathbfe_j tag1$$



          This is well-known fact about vectors. So, there's another key point about basis vectors: the vector space is spanned by these basis vectors. You can create a "constrain machinery" to verify if a set of vectors spans a entire vector space (i.e. forms a basis):




          A set $mathcalS$ is a basis for a vector space $mathfrakV$ if:



          1) the vectors of the set $mathcalS$ are linear independent



          2) the vectors of the set $mathcalS$ spanned the vector space $mathfrakV$, i.e. $mathfrakV equiv span(mathcalS)$




          So another point of view to "form" an entire vector space is from basis vectors. The intuitive idea is that, more or less, like if the basis vectors "constructs" (they span) and entire vector space.



          Another fact is that you can change the basis $mathbfe_j$ to another set basis of basis $mathbfe'_j$. Well, when you do this the vector components suffer a change too. And then the components transforms like:



          $$v'^k = sum^n_j=1M^k_jv^jtag2$$



          but, of course, the vector object, remains the same:



          $$mathbfv = sum_j = 1^n v^jmathbfe_j = sum_j = 1^n v'^jmathbfe'_j$$



          So, a vector, truly, is a object of a vector space, which have the form of $(1)$ and their components transforms like $(2)$.



          I.1.2) The "physicist way" of definition of a Tensor



          When you're searching about tensors on physics/engeneering texts you certainly will encounter the following definition of a tensor:




          A Tensor is defined as the kind of object which transforms, under a coordinate transformation, like:



          $$T'^ij = sum^n_k=1sum^n_l=1 M^i_kM^j_l T^kl tag3$$




          This definition serves to encode the notion that a valid physical law must be independent of coordinate systems (or all that G.Smith said).
          Well, there's some interesting happening here. A vector, is a object which have a precise formulation in terms of a algebraic structure, have a precise form (that of $(1)$, which the basis vectors spans the entire $mathfrakV$) and their components have "transformation behaviour" like $(2)$. If you compare what I exposed about vector and $(3)$, you may reach the conclusion that, concerning about tensors, some information about their nature is missing.
          The fact is, the definition $(3)$ isn't a tensor, but the "transformation behaviour" of the components of a tensor $mathbfT$.



          I.2) What truly is a Tensor?



          Well, you have the transformation of components of a tensor, i.e. $(3)$, well defined. But what about their "space" and "form" (something like $(1)$)?



          So, the space is called tensor product of two vector spaces:




          $$Votimes W tag4$$




          The construction of tensor product is something beyond the scope of this answer [*]. But the mathematical considerations about tensor products are that they generalize the concept of products of vectors (remember that, in linear algebra and analytic geometry you're able to "multiply" vector just using the inner product and vector product), they construct a concept of products of vector spaces (remember that a Direct sum of vector space gives you a notion of Sum of vector spaces), and they construct the precise notion of a tensor. Also, by the technology of the construction of the tensor product we can identify (i.e. stablish a isomorphism between vector spaces) the vector space $Votimes W$ and $mathfrakLin^2(V^* times W^*; mathbbK)$:




          $$Votimes W cong mathfrakLin^2(V^* times W^*; mathbbK) tag5$$



          where $mathfrakLin^2(V^* times W^*; mathbbK)$ is the dual vector space of all bilinear functionals.




          So a tensor have the form:




          $$mathbfT = sum^n_i=1sum^n_j=1 T^ij (mathbfe_iotimesmathbfe_j) tag6$$
          And $mathbfT in Votimes W$.




          Well, given the transformation rule $(3)$ the space, $(5)$, and form, $(6)$, you can talk precisely about what tensor really is. It's clear that the "object tensor" isn't just a transformation of coordinates. Also, in $(6)$ the tensor basis $(mathbfe_iotimesmathbfe_j)$ spans $Votimes W$.



          By virtue of the general construction of tensor product and the identification given by $(5)$, you'll also encounter the definition of a tensor as a multilinear object which spits scalars:




          $$beginarrayrl
          mathbfT :V^*times W^* &to mathbbK \
          (mathbfv,mathbfw)&mapsto mathbfT(mathbfv,mathbfw)=: v^icdot_mathbbKw^j
          endarray$$



          Where the operation $cdot_mathbbK$ is the product defined in the field.




          With this picture we say that a tensor like $(6)$ is a tensor of rank 2. And a vector a tensor of rank 1. Furthermore a scalar a tensor of rank 0.



          II) The tensor object and physics



          The well stablish physics, in general, deals with spacetime (like Newtonian physics), and the theory of spacetime is geometry. So, in order to really apply the tensor theory in physics first we have to give the geometry of physics.
          The geometry is basically classical Manifold Theory (which, again, is beyond the scope). And by Manifold Theory we can apply tensors on Manifolds introducing the concept of a tangent vector space. In parallel, we can construct another algebraic structure called Fibre Bundle of tangent spaces and then create the precise notion of Vector Field and Tensor Field.



          Tensor Fields are the real objects defined in physics books as tensors and we use the word of a tensor and tensor field as synonyms (IN FACT THEY ARE NOT THE SAME CONCEPT!). A tensor field is a section of the tensor bundle and a vector field, a section of vector bundle. But the intuitive definition (by far, general to physics) of a tensor field is then:




          $$[mathbfT(x^k)] = sum^n_i=1sum^n_j=1 [T^ij(x^k)] ([mathbfe_i(x^k)]otimes[mathbfe_j(x^k)]) tag5$$
          A tensor field is the object which attaches a tensor to every point p of the Manifold.




          With the manifold theory, the transformation rule becomes:




          $$[T'^ij(x^m)] = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l [T^kl(x^m)] equiv T'^ij = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l T^kl tag7$$




          Notice that the partials are simply the transformation matrices $M$. The matrices $M$ are called the Jacobians transformation matrices and the matrices $M$ became these jacobians by virtue of Manifold theory.



          In a restric way, these Jacobians are rotations,lorentz transformations,galilean transformation, and so on.



          III) What is the difference between zero-rank tensor x (scalar) and 1D vector [x]?



          So, in order to talk about lengths we have to realize that we are talking about a scalar field, or a tensor of rank 0. Then the difference between a scalar and a 1D vector (which is a tensor of rank 1) is that one is a scalar field and the other is a vector field. From a "Pure" mathematical point of view, (section I) if this answer) one is a member of the field $mathbbK$ and the other is a member of a vector space.
          Also, you're quite right, a scalar (or a scalar field) is a rank 0 tensor or "a object which do not have "matrices of change"; an object which do not suffer a change under a transformation of coordinates (we say that a scalar quantity is a invariant quantity).




          $$phi'= phi$$




          $$* * *$$



          [*] ROMAN.S. Advanced Linear Algebra. Springer. chapter 14. 1 ed. 1992.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "151"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469598%2f0-rank-tensor-vs-vector-in-1d%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            12












            $begingroup$

            “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



            The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



            But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



            Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



            Under any other transformation group, the distinction between scalars and vectors is similar.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
              $endgroup$
              – coobit
              8 hours ago











            • $begingroup$
              @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
              $endgroup$
              – Chiral Anomaly
              8 hours ago










            • $begingroup$
              Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
              $endgroup$
              – G. Smith
              8 hours ago











            • $begingroup$
              @coobit there's a difference in what a mathematician and a physicist mean when they say "vector". A mathematician would just use "vector" to mean "an element of a vector space", where the vector space in question could be anything depending on context. In physics, "vector" almost always means "an element of the tangent space of some manifold", where the manifold in question depends on context (often Euclidean or Minkowski space). See also this question on math stack exchange
              $endgroup$
              – Carmeister
              4 hours ago















            12












            $begingroup$

            “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



            The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



            But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



            Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



            Under any other transformation group, the distinction between scalars and vectors is similar.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
              $endgroup$
              – coobit
              8 hours ago











            • $begingroup$
              @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
              $endgroup$
              – Chiral Anomaly
              8 hours ago










            • $begingroup$
              Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
              $endgroup$
              – G. Smith
              8 hours ago











            • $begingroup$
              @coobit there's a difference in what a mathematician and a physicist mean when they say "vector". A mathematician would just use "vector" to mean "an element of a vector space", where the vector space in question could be anything depending on context. In physics, "vector" almost always means "an element of the tangent space of some manifold", where the manifold in question depends on context (often Euclidean or Minkowski space). See also this question on math stack exchange
              $endgroup$
              – Carmeister
              4 hours ago













            12












            12








            12





            $begingroup$

            “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



            The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



            But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



            Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



            Under any other transformation group, the distinction between scalars and vectors is similar.






            share|cite|improve this answer











            $endgroup$



            “Scalar”, “vector”, and “tensor” have no meaning without specifying the group of transformations. In physics we focus on groups such as rotations, Galilean transformations, Lorentz transformations, Poincaire transformations, and gauge transformations because these are symmetries of various physical theories, built in to reflect symmetries of the natural world.



            The length of a writing pen is a scalar under rotations and Galilean transformations. This is a significant physical fact about our world.



            But the fact that you can measure its length in various units is not significant, because units are inventions of humans, not of Nature. Physicists never say that the length of a writing pen “transforms” because you can choose to measure it in different length units. Different units such as inches and centimeters for a particular physical quantity like length do not have any physical significance at all.



            Going back to your original question, the difference between a scalar and a vector under rotations should now be obvious: a scalar is a single number that stays the same under a rotation, while a vector is a directed quantity that requires three numbers to describe it, and under rotations these numbers transform into linear combinations of each other, as specified by the relevant rotation matrix.



            Under any other transformation group, the distinction between scalars and vectors is similar.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 9 hours ago

























            answered 9 hours ago









            G. SmithG. Smith

            10.2k11429




            10.2k11429











            • $begingroup$
              I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
              $endgroup$
              – coobit
              8 hours ago











            • $begingroup$
              @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
              $endgroup$
              – Chiral Anomaly
              8 hours ago










            • $begingroup$
              Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
              $endgroup$
              – G. Smith
              8 hours ago











            • $begingroup$
              @coobit there's a difference in what a mathematician and a physicist mean when they say "vector". A mathematician would just use "vector" to mean "an element of a vector space", where the vector space in question could be anything depending on context. In physics, "vector" almost always means "an element of the tangent space of some manifold", where the manifold in question depends on context (often Euclidean or Minkowski space). See also this question on math stack exchange
              $endgroup$
              – Carmeister
              4 hours ago
















            • $begingroup$
              I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
              $endgroup$
              – coobit
              8 hours ago











            • $begingroup$
              @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
              $endgroup$
              – Chiral Anomaly
              8 hours ago










            • $begingroup$
              Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
              $endgroup$
              – G. Smith
              8 hours ago











            • $begingroup$
              @coobit there's a difference in what a mathematician and a physicist mean when they say "vector". A mathematician would just use "vector" to mean "an element of a vector space", where the vector space in question could be anything depending on context. In physics, "vector" almost always means "an element of the tangent space of some manifold", where the manifold in question depends on context (often Euclidean or Minkowski space). See also this question on math stack exchange
              $endgroup$
              – Carmeister
              4 hours ago















            $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            8 hours ago





            $begingroup$
            I'm sorry if it might sound dumb, but ... Is 1D vector invariant under rotation? I mean is there rotation in 1D space? If so how it's different from scalar?
            $endgroup$
            – coobit
            8 hours ago













            $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            8 hours ago




            $begingroup$
            @coobit Consider the group of reflections along that one dimension. A vector changes sign, but a scalar doesn't.
            $endgroup$
            – Chiral Anomaly
            8 hours ago












            $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            8 hours ago





            $begingroup$
            Whoops, I completely overlooked the fact that you were asking about 1D. (Since you had referred to scalars as rank 0, I was thinking "rank 1" , not "1D", when you said "vector".) There are no proper rotations in 1D. As @ChiralAnomaly explains, you can consider 1D reflections, and scalar and vectors transform differently under these, even though both are only a single number.
            $endgroup$
            – G. Smith
            8 hours ago













            $begingroup$
            @coobit there's a difference in what a mathematician and a physicist mean when they say "vector". A mathematician would just use "vector" to mean "an element of a vector space", where the vector space in question could be anything depending on context. In physics, "vector" almost always means "an element of the tangent space of some manifold", where the manifold in question depends on context (often Euclidean or Minkowski space). See also this question on math stack exchange
            $endgroup$
            – Carmeister
            4 hours ago




            $begingroup$
            @coobit there's a difference in what a mathematician and a physicist mean when they say "vector". A mathematician would just use "vector" to mean "an element of a vector space", where the vector space in question could be anything depending on context. In physics, "vector" almost always means "an element of the tangent space of some manifold", where the manifold in question depends on context (often Euclidean or Minkowski space). See also this question on math stack exchange
            $endgroup$
            – Carmeister
            4 hours ago











            0












            $begingroup$

            First of all, I'll constrain the discussion assuming:



            1) Finite-dimensional vector spaces



            2) Real Vector spaces



            3) Talking just about contravariant tensors



            4) Physics which use the standard notion of Spacetime



            $$* * *$$



            To answer your question I need to talk a little bit about Tensors.



            I) The tensor object and pure mathematics:



            The precise answer to the question "What is a tensor?" is, by far:




            A tensor is a object of a vector space called Tensor Product.




            In order to this general statement become something that have some value to you, I would like you to think a little bit about vectors and their algebra : the linear algebra.



            I.1) What truly is a Vector?



            First of all, if you look on linear algebra texts, you'll rapidly realize that the answer to the question "What are vectors after all? Matrices? Arrows? Functions?" is:




            A vector is a element of a algebraic structure called vector space.




            So after the study of the definition of a vector space you can talk with all rigour in the world that a vector isn't a arrow or a matrix, but a element of a vector space.



            I.1.1) Some facts about vectors



            Consider then a vector formed by a linear combination of basis vectors:



            $$mathbfv = sum_j = 1^n v^jmathbfe_j tag1$$



            This is well-known fact about vectors. So, there's another key point about basis vectors: the vector space is spanned by these basis vectors. You can create a "constrain machinery" to verify if a set of vectors spans a entire vector space (i.e. forms a basis):




            A set $mathcalS$ is a basis for a vector space $mathfrakV$ if:



            1) the vectors of the set $mathcalS$ are linear independent



            2) the vectors of the set $mathcalS$ spanned the vector space $mathfrakV$, i.e. $mathfrakV equiv span(mathcalS)$




            So another point of view to "form" an entire vector space is from basis vectors. The intuitive idea is that, more or less, like if the basis vectors "constructs" (they span) and entire vector space.



            Another fact is that you can change the basis $mathbfe_j$ to another set basis of basis $mathbfe'_j$. Well, when you do this the vector components suffer a change too. And then the components transforms like:



            $$v'^k = sum^n_j=1M^k_jv^jtag2$$



            but, of course, the vector object, remains the same:



            $$mathbfv = sum_j = 1^n v^jmathbfe_j = sum_j = 1^n v'^jmathbfe'_j$$



            So, a vector, truly, is a object of a vector space, which have the form of $(1)$ and their components transforms like $(2)$.



            I.1.2) The "physicist way" of definition of a Tensor



            When you're searching about tensors on physics/engeneering texts you certainly will encounter the following definition of a tensor:




            A Tensor is defined as the kind of object which transforms, under a coordinate transformation, like:



            $$T'^ij = sum^n_k=1sum^n_l=1 M^i_kM^j_l T^kl tag3$$




            This definition serves to encode the notion that a valid physical law must be independent of coordinate systems (or all that G.Smith said).
            Well, there's some interesting happening here. A vector, is a object which have a precise formulation in terms of a algebraic structure, have a precise form (that of $(1)$, which the basis vectors spans the entire $mathfrakV$) and their components have "transformation behaviour" like $(2)$. If you compare what I exposed about vector and $(3)$, you may reach the conclusion that, concerning about tensors, some information about their nature is missing.
            The fact is, the definition $(3)$ isn't a tensor, but the "transformation behaviour" of the components of a tensor $mathbfT$.



            I.2) What truly is a Tensor?



            Well, you have the transformation of components of a tensor, i.e. $(3)$, well defined. But what about their "space" and "form" (something like $(1)$)?



            So, the space is called tensor product of two vector spaces:




            $$Votimes W tag4$$




            The construction of tensor product is something beyond the scope of this answer [*]. But the mathematical considerations about tensor products are that they generalize the concept of products of vectors (remember that, in linear algebra and analytic geometry you're able to "multiply" vector just using the inner product and vector product), they construct a concept of products of vector spaces (remember that a Direct sum of vector space gives you a notion of Sum of vector spaces), and they construct the precise notion of a tensor. Also, by the technology of the construction of the tensor product we can identify (i.e. stablish a isomorphism between vector spaces) the vector space $Votimes W$ and $mathfrakLin^2(V^* times W^*; mathbbK)$:




            $$Votimes W cong mathfrakLin^2(V^* times W^*; mathbbK) tag5$$



            where $mathfrakLin^2(V^* times W^*; mathbbK)$ is the dual vector space of all bilinear functionals.




            So a tensor have the form:




            $$mathbfT = sum^n_i=1sum^n_j=1 T^ij (mathbfe_iotimesmathbfe_j) tag6$$
            And $mathbfT in Votimes W$.




            Well, given the transformation rule $(3)$ the space, $(5)$, and form, $(6)$, you can talk precisely about what tensor really is. It's clear that the "object tensor" isn't just a transformation of coordinates. Also, in $(6)$ the tensor basis $(mathbfe_iotimesmathbfe_j)$ spans $Votimes W$.



            By virtue of the general construction of tensor product and the identification given by $(5)$, you'll also encounter the definition of a tensor as a multilinear object which spits scalars:




            $$beginarrayrl
            mathbfT :V^*times W^* &to mathbbK \
            (mathbfv,mathbfw)&mapsto mathbfT(mathbfv,mathbfw)=: v^icdot_mathbbKw^j
            endarray$$



            Where the operation $cdot_mathbbK$ is the product defined in the field.




            With this picture we say that a tensor like $(6)$ is a tensor of rank 2. And a vector a tensor of rank 1. Furthermore a scalar a tensor of rank 0.



            II) The tensor object and physics



            The well stablish physics, in general, deals with spacetime (like Newtonian physics), and the theory of spacetime is geometry. So, in order to really apply the tensor theory in physics first we have to give the geometry of physics.
            The geometry is basically classical Manifold Theory (which, again, is beyond the scope). And by Manifold Theory we can apply tensors on Manifolds introducing the concept of a tangent vector space. In parallel, we can construct another algebraic structure called Fibre Bundle of tangent spaces and then create the precise notion of Vector Field and Tensor Field.



            Tensor Fields are the real objects defined in physics books as tensors and we use the word of a tensor and tensor field as synonyms (IN FACT THEY ARE NOT THE SAME CONCEPT!). A tensor field is a section of the tensor bundle and a vector field, a section of vector bundle. But the intuitive definition (by far, general to physics) of a tensor field is then:




            $$[mathbfT(x^k)] = sum^n_i=1sum^n_j=1 [T^ij(x^k)] ([mathbfe_i(x^k)]otimes[mathbfe_j(x^k)]) tag5$$
            A tensor field is the object which attaches a tensor to every point p of the Manifold.




            With the manifold theory, the transformation rule becomes:




            $$[T'^ij(x^m)] = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l [T^kl(x^m)] equiv T'^ij = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l T^kl tag7$$




            Notice that the partials are simply the transformation matrices $M$. The matrices $M$ are called the Jacobians transformation matrices and the matrices $M$ became these jacobians by virtue of Manifold theory.



            In a restric way, these Jacobians are rotations,lorentz transformations,galilean transformation, and so on.



            III) What is the difference between zero-rank tensor x (scalar) and 1D vector [x]?



            So, in order to talk about lengths we have to realize that we are talking about a scalar field, or a tensor of rank 0. Then the difference between a scalar and a 1D vector (which is a tensor of rank 1) is that one is a scalar field and the other is a vector field. From a "Pure" mathematical point of view, (section I) if this answer) one is a member of the field $mathbbK$ and the other is a member of a vector space.
            Also, you're quite right, a scalar (or a scalar field) is a rank 0 tensor or "a object which do not have "matrices of change"; an object which do not suffer a change under a transformation of coordinates (we say that a scalar quantity is a invariant quantity).




            $$phi'= phi$$




            $$* * *$$



            [*] ROMAN.S. Advanced Linear Algebra. Springer. chapter 14. 1 ed. 1992.






            share|cite|improve this answer











            $endgroup$

















              0












              $begingroup$

              First of all, I'll constrain the discussion assuming:



              1) Finite-dimensional vector spaces



              2) Real Vector spaces



              3) Talking just about contravariant tensors



              4) Physics which use the standard notion of Spacetime



              $$* * *$$



              To answer your question I need to talk a little bit about Tensors.



              I) The tensor object and pure mathematics:



              The precise answer to the question "What is a tensor?" is, by far:




              A tensor is a object of a vector space called Tensor Product.




              In order to this general statement become something that have some value to you, I would like you to think a little bit about vectors and their algebra : the linear algebra.



              I.1) What truly is a Vector?



              First of all, if you look on linear algebra texts, you'll rapidly realize that the answer to the question "What are vectors after all? Matrices? Arrows? Functions?" is:




              A vector is a element of a algebraic structure called vector space.




              So after the study of the definition of a vector space you can talk with all rigour in the world that a vector isn't a arrow or a matrix, but a element of a vector space.



              I.1.1) Some facts about vectors



              Consider then a vector formed by a linear combination of basis vectors:



              $$mathbfv = sum_j = 1^n v^jmathbfe_j tag1$$



              This is well-known fact about vectors. So, there's another key point about basis vectors: the vector space is spanned by these basis vectors. You can create a "constrain machinery" to verify if a set of vectors spans a entire vector space (i.e. forms a basis):




              A set $mathcalS$ is a basis for a vector space $mathfrakV$ if:



              1) the vectors of the set $mathcalS$ are linear independent



              2) the vectors of the set $mathcalS$ spanned the vector space $mathfrakV$, i.e. $mathfrakV equiv span(mathcalS)$




              So another point of view to "form" an entire vector space is from basis vectors. The intuitive idea is that, more or less, like if the basis vectors "constructs" (they span) and entire vector space.



              Another fact is that you can change the basis $mathbfe_j$ to another set basis of basis $mathbfe'_j$. Well, when you do this the vector components suffer a change too. And then the components transforms like:



              $$v'^k = sum^n_j=1M^k_jv^jtag2$$



              but, of course, the vector object, remains the same:



              $$mathbfv = sum_j = 1^n v^jmathbfe_j = sum_j = 1^n v'^jmathbfe'_j$$



              So, a vector, truly, is a object of a vector space, which have the form of $(1)$ and their components transforms like $(2)$.



              I.1.2) The "physicist way" of definition of a Tensor



              When you're searching about tensors on physics/engeneering texts you certainly will encounter the following definition of a tensor:




              A Tensor is defined as the kind of object which transforms, under a coordinate transformation, like:



              $$T'^ij = sum^n_k=1sum^n_l=1 M^i_kM^j_l T^kl tag3$$




              This definition serves to encode the notion that a valid physical law must be independent of coordinate systems (or all that G.Smith said).
              Well, there's some interesting happening here. A vector, is a object which have a precise formulation in terms of a algebraic structure, have a precise form (that of $(1)$, which the basis vectors spans the entire $mathfrakV$) and their components have "transformation behaviour" like $(2)$. If you compare what I exposed about vector and $(3)$, you may reach the conclusion that, concerning about tensors, some information about their nature is missing.
              The fact is, the definition $(3)$ isn't a tensor, but the "transformation behaviour" of the components of a tensor $mathbfT$.



              I.2) What truly is a Tensor?



              Well, you have the transformation of components of a tensor, i.e. $(3)$, well defined. But what about their "space" and "form" (something like $(1)$)?



              So, the space is called tensor product of two vector spaces:




              $$Votimes W tag4$$




              The construction of tensor product is something beyond the scope of this answer [*]. But the mathematical considerations about tensor products are that they generalize the concept of products of vectors (remember that, in linear algebra and analytic geometry you're able to "multiply" vector just using the inner product and vector product), they construct a concept of products of vector spaces (remember that a Direct sum of vector space gives you a notion of Sum of vector spaces), and they construct the precise notion of a tensor. Also, by the technology of the construction of the tensor product we can identify (i.e. stablish a isomorphism between vector spaces) the vector space $Votimes W$ and $mathfrakLin^2(V^* times W^*; mathbbK)$:




              $$Votimes W cong mathfrakLin^2(V^* times W^*; mathbbK) tag5$$



              where $mathfrakLin^2(V^* times W^*; mathbbK)$ is the dual vector space of all bilinear functionals.




              So a tensor have the form:




              $$mathbfT = sum^n_i=1sum^n_j=1 T^ij (mathbfe_iotimesmathbfe_j) tag6$$
              And $mathbfT in Votimes W$.




              Well, given the transformation rule $(3)$ the space, $(5)$, and form, $(6)$, you can talk precisely about what tensor really is. It's clear that the "object tensor" isn't just a transformation of coordinates. Also, in $(6)$ the tensor basis $(mathbfe_iotimesmathbfe_j)$ spans $Votimes W$.



              By virtue of the general construction of tensor product and the identification given by $(5)$, you'll also encounter the definition of a tensor as a multilinear object which spits scalars:




              $$beginarrayrl
              mathbfT :V^*times W^* &to mathbbK \
              (mathbfv,mathbfw)&mapsto mathbfT(mathbfv,mathbfw)=: v^icdot_mathbbKw^j
              endarray$$



              Where the operation $cdot_mathbbK$ is the product defined in the field.




              With this picture we say that a tensor like $(6)$ is a tensor of rank 2. And a vector a tensor of rank 1. Furthermore a scalar a tensor of rank 0.



              II) The tensor object and physics



              The well stablish physics, in general, deals with spacetime (like Newtonian physics), and the theory of spacetime is geometry. So, in order to really apply the tensor theory in physics first we have to give the geometry of physics.
              The geometry is basically classical Manifold Theory (which, again, is beyond the scope). And by Manifold Theory we can apply tensors on Manifolds introducing the concept of a tangent vector space. In parallel, we can construct another algebraic structure called Fibre Bundle of tangent spaces and then create the precise notion of Vector Field and Tensor Field.



              Tensor Fields are the real objects defined in physics books as tensors and we use the word of a tensor and tensor field as synonyms (IN FACT THEY ARE NOT THE SAME CONCEPT!). A tensor field is a section of the tensor bundle and a vector field, a section of vector bundle. But the intuitive definition (by far, general to physics) of a tensor field is then:




              $$[mathbfT(x^k)] = sum^n_i=1sum^n_j=1 [T^ij(x^k)] ([mathbfe_i(x^k)]otimes[mathbfe_j(x^k)]) tag5$$
              A tensor field is the object which attaches a tensor to every point p of the Manifold.




              With the manifold theory, the transformation rule becomes:




              $$[T'^ij(x^m)] = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l [T^kl(x^m)] equiv T'^ij = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l T^kl tag7$$




              Notice that the partials are simply the transformation matrices $M$. The matrices $M$ are called the Jacobians transformation matrices and the matrices $M$ became these jacobians by virtue of Manifold theory.



              In a restric way, these Jacobians are rotations,lorentz transformations,galilean transformation, and so on.



              III) What is the difference between zero-rank tensor x (scalar) and 1D vector [x]?



              So, in order to talk about lengths we have to realize that we are talking about a scalar field, or a tensor of rank 0. Then the difference between a scalar and a 1D vector (which is a tensor of rank 1) is that one is a scalar field and the other is a vector field. From a "Pure" mathematical point of view, (section I) if this answer) one is a member of the field $mathbbK$ and the other is a member of a vector space.
              Also, you're quite right, a scalar (or a scalar field) is a rank 0 tensor or "a object which do not have "matrices of change"; an object which do not suffer a change under a transformation of coordinates (we say that a scalar quantity is a invariant quantity).




              $$phi'= phi$$




              $$* * *$$



              [*] ROMAN.S. Advanced Linear Algebra. Springer. chapter 14. 1 ed. 1992.






              share|cite|improve this answer











              $endgroup$















                0












                0








                0





                $begingroup$

                First of all, I'll constrain the discussion assuming:



                1) Finite-dimensional vector spaces



                2) Real Vector spaces



                3) Talking just about contravariant tensors



                4) Physics which use the standard notion of Spacetime



                $$* * *$$



                To answer your question I need to talk a little bit about Tensors.



                I) The tensor object and pure mathematics:



                The precise answer to the question "What is a tensor?" is, by far:




                A tensor is a object of a vector space called Tensor Product.




                In order to this general statement become something that have some value to you, I would like you to think a little bit about vectors and their algebra : the linear algebra.



                I.1) What truly is a Vector?



                First of all, if you look on linear algebra texts, you'll rapidly realize that the answer to the question "What are vectors after all? Matrices? Arrows? Functions?" is:




                A vector is a element of a algebraic structure called vector space.




                So after the study of the definition of a vector space you can talk with all rigour in the world that a vector isn't a arrow or a matrix, but a element of a vector space.



                I.1.1) Some facts about vectors



                Consider then a vector formed by a linear combination of basis vectors:



                $$mathbfv = sum_j = 1^n v^jmathbfe_j tag1$$



                This is well-known fact about vectors. So, there's another key point about basis vectors: the vector space is spanned by these basis vectors. You can create a "constrain machinery" to verify if a set of vectors spans a entire vector space (i.e. forms a basis):




                A set $mathcalS$ is a basis for a vector space $mathfrakV$ if:



                1) the vectors of the set $mathcalS$ are linear independent



                2) the vectors of the set $mathcalS$ spanned the vector space $mathfrakV$, i.e. $mathfrakV equiv span(mathcalS)$




                So another point of view to "form" an entire vector space is from basis vectors. The intuitive idea is that, more or less, like if the basis vectors "constructs" (they span) and entire vector space.



                Another fact is that you can change the basis $mathbfe_j$ to another set basis of basis $mathbfe'_j$. Well, when you do this the vector components suffer a change too. And then the components transforms like:



                $$v'^k = sum^n_j=1M^k_jv^jtag2$$



                but, of course, the vector object, remains the same:



                $$mathbfv = sum_j = 1^n v^jmathbfe_j = sum_j = 1^n v'^jmathbfe'_j$$



                So, a vector, truly, is a object of a vector space, which have the form of $(1)$ and their components transforms like $(2)$.



                I.1.2) The "physicist way" of definition of a Tensor



                When you're searching about tensors on physics/engeneering texts you certainly will encounter the following definition of a tensor:




                A Tensor is defined as the kind of object which transforms, under a coordinate transformation, like:



                $$T'^ij = sum^n_k=1sum^n_l=1 M^i_kM^j_l T^kl tag3$$




                This definition serves to encode the notion that a valid physical law must be independent of coordinate systems (or all that G.Smith said).
                Well, there's some interesting happening here. A vector, is a object which have a precise formulation in terms of a algebraic structure, have a precise form (that of $(1)$, which the basis vectors spans the entire $mathfrakV$) and their components have "transformation behaviour" like $(2)$. If you compare what I exposed about vector and $(3)$, you may reach the conclusion that, concerning about tensors, some information about their nature is missing.
                The fact is, the definition $(3)$ isn't a tensor, but the "transformation behaviour" of the components of a tensor $mathbfT$.



                I.2) What truly is a Tensor?



                Well, you have the transformation of components of a tensor, i.e. $(3)$, well defined. But what about their "space" and "form" (something like $(1)$)?



                So, the space is called tensor product of two vector spaces:




                $$Votimes W tag4$$




                The construction of tensor product is something beyond the scope of this answer [*]. But the mathematical considerations about tensor products are that they generalize the concept of products of vectors (remember that, in linear algebra and analytic geometry you're able to "multiply" vector just using the inner product and vector product), they construct a concept of products of vector spaces (remember that a Direct sum of vector space gives you a notion of Sum of vector spaces), and they construct the precise notion of a tensor. Also, by the technology of the construction of the tensor product we can identify (i.e. stablish a isomorphism between vector spaces) the vector space $Votimes W$ and $mathfrakLin^2(V^* times W^*; mathbbK)$:




                $$Votimes W cong mathfrakLin^2(V^* times W^*; mathbbK) tag5$$



                where $mathfrakLin^2(V^* times W^*; mathbbK)$ is the dual vector space of all bilinear functionals.




                So a tensor have the form:




                $$mathbfT = sum^n_i=1sum^n_j=1 T^ij (mathbfe_iotimesmathbfe_j) tag6$$
                And $mathbfT in Votimes W$.




                Well, given the transformation rule $(3)$ the space, $(5)$, and form, $(6)$, you can talk precisely about what tensor really is. It's clear that the "object tensor" isn't just a transformation of coordinates. Also, in $(6)$ the tensor basis $(mathbfe_iotimesmathbfe_j)$ spans $Votimes W$.



                By virtue of the general construction of tensor product and the identification given by $(5)$, you'll also encounter the definition of a tensor as a multilinear object which spits scalars:




                $$beginarrayrl
                mathbfT :V^*times W^* &to mathbbK \
                (mathbfv,mathbfw)&mapsto mathbfT(mathbfv,mathbfw)=: v^icdot_mathbbKw^j
                endarray$$



                Where the operation $cdot_mathbbK$ is the product defined in the field.




                With this picture we say that a tensor like $(6)$ is a tensor of rank 2. And a vector a tensor of rank 1. Furthermore a scalar a tensor of rank 0.



                II) The tensor object and physics



                The well stablish physics, in general, deals with spacetime (like Newtonian physics), and the theory of spacetime is geometry. So, in order to really apply the tensor theory in physics first we have to give the geometry of physics.
                The geometry is basically classical Manifold Theory (which, again, is beyond the scope). And by Manifold Theory we can apply tensors on Manifolds introducing the concept of a tangent vector space. In parallel, we can construct another algebraic structure called Fibre Bundle of tangent spaces and then create the precise notion of Vector Field and Tensor Field.



                Tensor Fields are the real objects defined in physics books as tensors and we use the word of a tensor and tensor field as synonyms (IN FACT THEY ARE NOT THE SAME CONCEPT!). A tensor field is a section of the tensor bundle and a vector field, a section of vector bundle. But the intuitive definition (by far, general to physics) of a tensor field is then:




                $$[mathbfT(x^k)] = sum^n_i=1sum^n_j=1 [T^ij(x^k)] ([mathbfe_i(x^k)]otimes[mathbfe_j(x^k)]) tag5$$
                A tensor field is the object which attaches a tensor to every point p of the Manifold.




                With the manifold theory, the transformation rule becomes:




                $$[T'^ij(x^m)] = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l [T^kl(x^m)] equiv T'^ij = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l T^kl tag7$$




                Notice that the partials are simply the transformation matrices $M$. The matrices $M$ are called the Jacobians transformation matrices and the matrices $M$ became these jacobians by virtue of Manifold theory.



                In a restric way, these Jacobians are rotations,lorentz transformations,galilean transformation, and so on.



                III) What is the difference between zero-rank tensor x (scalar) and 1D vector [x]?



                So, in order to talk about lengths we have to realize that we are talking about a scalar field, or a tensor of rank 0. Then the difference between a scalar and a 1D vector (which is a tensor of rank 1) is that one is a scalar field and the other is a vector field. From a "Pure" mathematical point of view, (section I) if this answer) one is a member of the field $mathbbK$ and the other is a member of a vector space.
                Also, you're quite right, a scalar (or a scalar field) is a rank 0 tensor or "a object which do not have "matrices of change"; an object which do not suffer a change under a transformation of coordinates (we say that a scalar quantity is a invariant quantity).




                $$phi'= phi$$




                $$* * *$$



                [*] ROMAN.S. Advanced Linear Algebra. Springer. chapter 14. 1 ed. 1992.






                share|cite|improve this answer











                $endgroup$



                First of all, I'll constrain the discussion assuming:



                1) Finite-dimensional vector spaces



                2) Real Vector spaces



                3) Talking just about contravariant tensors



                4) Physics which use the standard notion of Spacetime



                $$* * *$$



                To answer your question I need to talk a little bit about Tensors.



                I) The tensor object and pure mathematics:



                The precise answer to the question "What is a tensor?" is, by far:




                A tensor is a object of a vector space called Tensor Product.




                In order to this general statement become something that have some value to you, I would like you to think a little bit about vectors and their algebra : the linear algebra.



                I.1) What truly is a Vector?



                First of all, if you look on linear algebra texts, you'll rapidly realize that the answer to the question "What are vectors after all? Matrices? Arrows? Functions?" is:




                A vector is a element of a algebraic structure called vector space.




                So after the study of the definition of a vector space you can talk with all rigour in the world that a vector isn't a arrow or a matrix, but a element of a vector space.



                I.1.1) Some facts about vectors



                Consider then a vector formed by a linear combination of basis vectors:



                $$mathbfv = sum_j = 1^n v^jmathbfe_j tag1$$



                This is well-known fact about vectors. So, there's another key point about basis vectors: the vector space is spanned by these basis vectors. You can create a "constrain machinery" to verify if a set of vectors spans a entire vector space (i.e. forms a basis):




                A set $mathcalS$ is a basis for a vector space $mathfrakV$ if:



                1) the vectors of the set $mathcalS$ are linear independent



                2) the vectors of the set $mathcalS$ spanned the vector space $mathfrakV$, i.e. $mathfrakV equiv span(mathcalS)$




                So another point of view to "form" an entire vector space is from basis vectors. The intuitive idea is that, more or less, like if the basis vectors "constructs" (they span) and entire vector space.



                Another fact is that you can change the basis $mathbfe_j$ to another set basis of basis $mathbfe'_j$. Well, when you do this the vector components suffer a change too. And then the components transforms like:



                $$v'^k = sum^n_j=1M^k_jv^jtag2$$



                but, of course, the vector object, remains the same:



                $$mathbfv = sum_j = 1^n v^jmathbfe_j = sum_j = 1^n v'^jmathbfe'_j$$



                So, a vector, truly, is a object of a vector space, which have the form of $(1)$ and their components transforms like $(2)$.



                I.1.2) The "physicist way" of definition of a Tensor



                When you're searching about tensors on physics/engeneering texts you certainly will encounter the following definition of a tensor:




                A Tensor is defined as the kind of object which transforms, under a coordinate transformation, like:



                $$T'^ij = sum^n_k=1sum^n_l=1 M^i_kM^j_l T^kl tag3$$




                This definition serves to encode the notion that a valid physical law must be independent of coordinate systems (or all that G.Smith said).
                Well, there's some interesting happening here. A vector, is a object which have a precise formulation in terms of a algebraic structure, have a precise form (that of $(1)$, which the basis vectors spans the entire $mathfrakV$) and their components have "transformation behaviour" like $(2)$. If you compare what I exposed about vector and $(3)$, you may reach the conclusion that, concerning about tensors, some information about their nature is missing.
                The fact is, the definition $(3)$ isn't a tensor, but the "transformation behaviour" of the components of a tensor $mathbfT$.



                I.2) What truly is a Tensor?



                Well, you have the transformation of components of a tensor, i.e. $(3)$, well defined. But what about their "space" and "form" (something like $(1)$)?



                So, the space is called tensor product of two vector spaces:




                $$Votimes W tag4$$




                The construction of tensor product is something beyond the scope of this answer [*]. But the mathematical considerations about tensor products are that they generalize the concept of products of vectors (remember that, in linear algebra and analytic geometry you're able to "multiply" vector just using the inner product and vector product), they construct a concept of products of vector spaces (remember that a Direct sum of vector space gives you a notion of Sum of vector spaces), and they construct the precise notion of a tensor. Also, by the technology of the construction of the tensor product we can identify (i.e. stablish a isomorphism between vector spaces) the vector space $Votimes W$ and $mathfrakLin^2(V^* times W^*; mathbbK)$:




                $$Votimes W cong mathfrakLin^2(V^* times W^*; mathbbK) tag5$$



                where $mathfrakLin^2(V^* times W^*; mathbbK)$ is the dual vector space of all bilinear functionals.




                So a tensor have the form:




                $$mathbfT = sum^n_i=1sum^n_j=1 T^ij (mathbfe_iotimesmathbfe_j) tag6$$
                And $mathbfT in Votimes W$.




                Well, given the transformation rule $(3)$ the space, $(5)$, and form, $(6)$, you can talk precisely about what tensor really is. It's clear that the "object tensor" isn't just a transformation of coordinates. Also, in $(6)$ the tensor basis $(mathbfe_iotimesmathbfe_j)$ spans $Votimes W$.



                By virtue of the general construction of tensor product and the identification given by $(5)$, you'll also encounter the definition of a tensor as a multilinear object which spits scalars:




                $$beginarrayrl
                mathbfT :V^*times W^* &to mathbbK \
                (mathbfv,mathbfw)&mapsto mathbfT(mathbfv,mathbfw)=: v^icdot_mathbbKw^j
                endarray$$



                Where the operation $cdot_mathbbK$ is the product defined in the field.




                With this picture we say that a tensor like $(6)$ is a tensor of rank 2. And a vector a tensor of rank 1. Furthermore a scalar a tensor of rank 0.



                II) The tensor object and physics



                The well stablish physics, in general, deals with spacetime (like Newtonian physics), and the theory of spacetime is geometry. So, in order to really apply the tensor theory in physics first we have to give the geometry of physics.
                The geometry is basically classical Manifold Theory (which, again, is beyond the scope). And by Manifold Theory we can apply tensors on Manifolds introducing the concept of a tangent vector space. In parallel, we can construct another algebraic structure called Fibre Bundle of tangent spaces and then create the precise notion of Vector Field and Tensor Field.



                Tensor Fields are the real objects defined in physics books as tensors and we use the word of a tensor and tensor field as synonyms (IN FACT THEY ARE NOT THE SAME CONCEPT!). A tensor field is a section of the tensor bundle and a vector field, a section of vector bundle. But the intuitive definition (by far, general to physics) of a tensor field is then:




                $$[mathbfT(x^k)] = sum^n_i=1sum^n_j=1 [T^ij(x^k)] ([mathbfe_i(x^k)]otimes[mathbfe_j(x^k)]) tag5$$
                A tensor field is the object which attaches a tensor to every point p of the Manifold.




                With the manifold theory, the transformation rule becomes:




                $$[T'^ij(x^m)] = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l [T^kl(x^m)] equiv T'^ij = sum^n_k=1sum^n_l=1 fracpartial x'^ipartial x^kfracpartial x'^jpartial x^l T^kl tag7$$




                Notice that the partials are simply the transformation matrices $M$. The matrices $M$ are called the Jacobians transformation matrices and the matrices $M$ became these jacobians by virtue of Manifold theory.



                In a restric way, these Jacobians are rotations,lorentz transformations,galilean transformation, and so on.



                III) What is the difference between zero-rank tensor x (scalar) and 1D vector [x]?



                So, in order to talk about lengths we have to realize that we are talking about a scalar field, or a tensor of rank 0. Then the difference between a scalar and a 1D vector (which is a tensor of rank 1) is that one is a scalar field and the other is a vector field. From a "Pure" mathematical point of view, (section I) if this answer) one is a member of the field $mathbbK$ and the other is a member of a vector space.
                Also, you're quite right, a scalar (or a scalar field) is a rank 0 tensor or "a object which do not have "matrices of change"; an object which do not suffer a change under a transformation of coordinates (we say that a scalar quantity is a invariant quantity).




                $$phi'= phi$$




                $$* * *$$



                [*] ROMAN.S. Advanced Linear Algebra. Springer. chapter 14. 1 ed. 1992.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 6 hours ago

























                answered 6 hours ago









                M.N.RaiaM.N.Raia

                510314




                510314



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Physics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469598%2f0-rank-tensor-vs-vector-in-1d%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    На ростанях Змест Гісторыя напісання | Месца дзеяння | Час дзеяння | Назва | Праблематыка трылогіі | Аўтабіяграфічнасць | Трылогія ў тэатры і кіно | Пераклады | У культуры | Зноскі Літаратура | Спасылкі | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 зменаАкадэмік МІЦКЕВІЧ Канстанцін Міхайлавіч (Якуб Колас) Прадмова М. І. Мушынскага, доктара філалагічных навук, члена-карэспандэнта Нацыянальнай акадэміі навук Рэспублікі Беларусь, прафесараНашаніўцы ў трылогіі Якуба Коласа «На ростанях»: вобразы і прататыпы125 лет Янке МавруКнижно-документальная выставка к 125-летию со дня рождения Якуба Коласа (1882—1956)Колас Якуб. Новая зямля (паэма), На ростанях (трылогія). Сулкоўскі Уладзімір. Радзіма Якуба Коласа (серыял жывапісных палотнаў)Вокладка кнігіІлюстрацыя М. С. БасалыгіНа ростаняхАўдыёверсія трылогііВ. Жолтак У Люсiнскай школе 1959

                    Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                    Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп