Proving by induction of n. Is this correct until this point?prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^3$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_k=1^n (k+1)2^k = n2^n+1 $5. Prove by induction on $n$ that $sumlimits_k=1^n frac kk+1 leq n - frac1n+1$Prove by induction on n that $sumlimits_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1$Prove by induction on n that $sumlimits_k=1^n frac 2^kk leq 2^n$

What was required to accept "troll"?

Can the electrostatic force be infinite in magnitude?

Freedom of speech and where it applies

Why does this part of the Space Shuttle launch pad seem to be floating in air?

What does 사자 in this picture means?

What if somebody invests in my application?

Is exact Kanji stroke length important?

Is there enough fresh water in the world to eradicate the drinking water crisis?

Is there a problem with hiding "forgot password" until it's needed?

What will be the benefits of Brexit?

Should a half Jewish man be discouraged from marrying a Jewess?

Bob has never been a M before

How do I repair my stair bannister?

Stereotypical names

Superhero words!

Pronouncing Homer as in modern Greek

What is the term when two people sing in harmony, but they aren't singing the same notes?

In Star Trek IV, why did the Bounty go back to a time when whales were already rare?

How do I rename a LINUX host without needing to reboot for the rename to take effect?

Is there a good way to store credentials outside of a password manager?

I2C signal and power over long range (10meter cable)

Partial sums of primes

Giant Toughroad SLR 2 for 200 miles in two days, will it make it?

Golf game boilerplate



Proving by induction of n. Is this correct until this point?


prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^3$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_k=1^n (k+1)2^k = n2^n+1 $5. Prove by induction on $n$ that $sumlimits_k=1^n frac kk+1 leq n - frac1n+1$Prove by induction on n that $sumlimits_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1$Prove by induction on n that $sumlimits_k=1^n frac 2^kk leq 2^n$













4












$begingroup$



$$
sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
$$




Base Case:



I did $n = 1$, so..



LHS-



$$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



RHS-



$$frac12 - frac1(n+1)2^n+1 = frac38$$



so LHS = RHS



Inductive case-



LHS for $n+1$



$$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



and then I think that you can use inductive hypothesis to change it to the form of
$$
frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
$$



and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



$$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



$$=$$



$$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



$$=$$



$$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



then put it back in with the rest of the equation, bringing me to



$$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



then



$$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



and



$$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



$$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



which I think simplifies down to this after factoring out a $2^n$ from the numerator?



$$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



canceling out $2^n$



$$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



and I'm stuck, please help!










share|cite|improve this question









$endgroup$
















    4












    $begingroup$



    $$
    sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
    $$




    Base Case:



    I did $n = 1$, so..



    LHS-



    $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



    RHS-



    $$frac12 - frac1(n+1)2^n+1 = frac38$$



    so LHS = RHS



    Inductive case-



    LHS for $n+1$



    $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



    and then I think that you can use inductive hypothesis to change it to the form of
    $$
    frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
    $$



    and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



    $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



    $$=$$



    $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



    $$=$$



    $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



    then put it back in with the rest of the equation, bringing me to



    $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



    then



    $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



    and



    $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



    $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



    which I think simplifies down to this after factoring out a $2^n$ from the numerator?



    $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



    canceling out $2^n$



    $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



    and I'm stuck, please help!










    share|cite|improve this question









    $endgroup$














      4












      4








      4


      1



      $begingroup$



      $$
      sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
      $$




      Base Case:



      I did $n = 1$, so..



      LHS-



      $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



      RHS-



      $$frac12 - frac1(n+1)2^n+1 = frac38$$



      so LHS = RHS



      Inductive case-



      LHS for $n+1$



      $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



      and then I think that you can use inductive hypothesis to change it to the form of
      $$
      frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
      $$



      and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



      $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



      $$=$$



      $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



      $$=$$



      $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then put it back in with the rest of the equation, bringing me to



      $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then



      $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



      and



      $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



      $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



      which I think simplifies down to this after factoring out a $2^n$ from the numerator?



      $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



      canceling out $2^n$



      $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



      and I'm stuck, please help!










      share|cite|improve this question









      $endgroup$





      $$
      sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
      $$




      Base Case:



      I did $n = 1$, so..



      LHS-



      $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



      RHS-



      $$frac12 - frac1(n+1)2^n+1 = frac38$$



      so LHS = RHS



      Inductive case-



      LHS for $n+1$



      $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



      and then I think that you can use inductive hypothesis to change it to the form of
      $$
      frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
      $$



      and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



      $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



      $$=$$



      $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



      $$=$$



      $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then put it back in with the rest of the equation, bringing me to



      $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then



      $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



      and



      $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



      $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



      which I think simplifies down to this after factoring out a $2^n$ from the numerator?



      $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



      canceling out $2^n$



      $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



      and I'm stuck, please help!







      discrete-mathematics induction






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      BrownieBrownie

      1927




      1927




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Your error is just after the sixth step from the bottom:



          $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



          Then you are done.



          You accidentally added the two middle terms instead of subtracting.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Using a telescoping sum, we get
            $$
            beginalign
            sum_k=1^nfrack+2k(k+1)2^k+1
            &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
            &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
            &=frac12-frac1(n+1)2^n+1
            endalign
            $$






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-is-this-correct-until-this-point%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Your error is just after the sixth step from the bottom:



              $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



              Then you are done.



              You accidentally added the two middle terms instead of subtracting.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                Your error is just after the sixth step from the bottom:



                $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                Then you are done.



                You accidentally added the two middle terms instead of subtracting.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  Your error is just after the sixth step from the bottom:



                  $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                  Then you are done.



                  You accidentally added the two middle terms instead of subtracting.






                  share|cite|improve this answer









                  $endgroup$



                  Your error is just after the sixth step from the bottom:



                  $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                  Then you are done.



                  You accidentally added the two middle terms instead of subtracting.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 4 hours ago









                  John Wayland BalesJohn Wayland Bales

                  15.1k21238




                  15.1k21238





















                      2












                      $begingroup$

                      Using a telescoping sum, we get
                      $$
                      beginalign
                      sum_k=1^nfrack+2k(k+1)2^k+1
                      &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                      &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                      &=frac12-frac1(n+1)2^n+1
                      endalign
                      $$






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        Using a telescoping sum, we get
                        $$
                        beginalign
                        sum_k=1^nfrack+2k(k+1)2^k+1
                        &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                        &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                        &=frac12-frac1(n+1)2^n+1
                        endalign
                        $$






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Using a telescoping sum, we get
                          $$
                          beginalign
                          sum_k=1^nfrack+2k(k+1)2^k+1
                          &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                          &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                          &=frac12-frac1(n+1)2^n+1
                          endalign
                          $$






                          share|cite|improve this answer









                          $endgroup$



                          Using a telescoping sum, we get
                          $$
                          beginalign
                          sum_k=1^nfrack+2k(k+1)2^k+1
                          &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                          &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                          &=frac12-frac1(n+1)2^n+1
                          endalign
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 4 hours ago









                          robjohnrobjohn

                          270k27312639




                          270k27312639



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-is-this-correct-until-this-point%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

                              Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

                              Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery