Inductor and Capacitor in Parallel The Next CEO of Stack OverflowCapacitor related queryPhysical question on an RLC circuitCapacitor / inductor resonanceWhy do Capacitor Inductor circuits Oscillate instead of reaching equilibrium?Current in inductor just after switch is closedWhy do switch burns out due to charged Inductor and capacitor while performing switching operation?Charging current of capacitorRC Discharge/ChargingWhy does discharging a capacitor give a higher power output than using a battery?Inductor and Capacitor with a DC supply

How to Implement Deterministic Encryption Safely in .NET

Is it okay to majorly distort historical facts while writing a fiction story?

Free fall ellipse or parabola?

Computationally populating tables with probability data

IC has pull-down resistors on SMBus lines?

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Are the names of these months realistic?

Is it ok to trim down a tube patch?

The Ultimate Number Sequence Puzzle

Inductor and Capacitor in Parallel

Could a dragon use its wings to swim?

Physiological effects of huge anime eyes

Man transported from Alternate World into ours by a Neutrino Detector

Why do we say 'Un seul M' and not 'Une seule M' even though M is a "consonne"

Cannot shrink btrfs filesystem although there is still data and metadata space left : ERROR: unable to resize '/home': No space left on device

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what chip

Ising model simulation

From jafe to El-Guest

What is the process for purifying your home if you believe it may have been previously used for pagan worship?

Strange use of "whether ... than ..." in official text

What day is it again?

Is there a reasonable and studied concept of reduction between regular languages?

How did Beeri the Hittite come up with naming his daughter Yehudit?

Aggressive Under-Indexing and no data for missing index



Inductor and Capacitor in Parallel



The Next CEO of Stack OverflowCapacitor related queryPhysical question on an RLC circuitCapacitor / inductor resonanceWhy do Capacitor Inductor circuits Oscillate instead of reaching equilibrium?Current in inductor just after switch is closedWhy do switch burns out due to charged Inductor and capacitor while performing switching operation?Charging current of capacitorRC Discharge/ChargingWhy does discharging a capacitor give a higher power output than using a battery?Inductor and Capacitor with a DC supply










2












$begingroup$


I've been staring at this for 10 minutes and I'm soooo confused. Hopefully, you guys can help!



enter image description here



So, let's say we close the switch. From what I understand, the capacitor will charge up to $10V$ almost instantaneously, while no current will flow through the inductor. At the very beginning, there'll be $0.2A$ flowing through the resistor.



But what happens if we leave the switch closed for a long time?



My book says the current through the inductor would pick up to $0.2A$, while the current through the capacitor drops to $0A$.



However, that seems wrong to me...if the current through the inductor ever stops changing, the inductor would just behave like a shorted section of a circuit, right? Wouldn't the capacitor discharge through it?



In terms of voltage drop - if the current through the resistor were ever to reach $0.2A$, that would mean that the entirety of the voltage is dropping through the resistor. There is no voltage drop through the inductor.



Buuut, since the inductor and the capacitor are in parallel, wouldn't that automatically mean there MUST be no charge on the capacitor either?



Is my book wrong in saying after an infinite amount of time with the switch closed there will be a 10-volt difference across the capacitor? Thanks!










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Shouldn't I = 0.2A in the beginning
    $endgroup$
    – Starboy
    13 hours ago










  • $begingroup$
    @Starboy fixing it now! Thanks!
    $endgroup$
    – Joshua Ronis
    11 hours ago















2












$begingroup$


I've been staring at this for 10 minutes and I'm soooo confused. Hopefully, you guys can help!



enter image description here



So, let's say we close the switch. From what I understand, the capacitor will charge up to $10V$ almost instantaneously, while no current will flow through the inductor. At the very beginning, there'll be $0.2A$ flowing through the resistor.



But what happens if we leave the switch closed for a long time?



My book says the current through the inductor would pick up to $0.2A$, while the current through the capacitor drops to $0A$.



However, that seems wrong to me...if the current through the inductor ever stops changing, the inductor would just behave like a shorted section of a circuit, right? Wouldn't the capacitor discharge through it?



In terms of voltage drop - if the current through the resistor were ever to reach $0.2A$, that would mean that the entirety of the voltage is dropping through the resistor. There is no voltage drop through the inductor.



Buuut, since the inductor and the capacitor are in parallel, wouldn't that automatically mean there MUST be no charge on the capacitor either?



Is my book wrong in saying after an infinite amount of time with the switch closed there will be a 10-volt difference across the capacitor? Thanks!










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Shouldn't I = 0.2A in the beginning
    $endgroup$
    – Starboy
    13 hours ago










  • $begingroup$
    @Starboy fixing it now! Thanks!
    $endgroup$
    – Joshua Ronis
    11 hours ago













2












2








2


2



$begingroup$


I've been staring at this for 10 minutes and I'm soooo confused. Hopefully, you guys can help!



enter image description here



So, let's say we close the switch. From what I understand, the capacitor will charge up to $10V$ almost instantaneously, while no current will flow through the inductor. At the very beginning, there'll be $0.2A$ flowing through the resistor.



But what happens if we leave the switch closed for a long time?



My book says the current through the inductor would pick up to $0.2A$, while the current through the capacitor drops to $0A$.



However, that seems wrong to me...if the current through the inductor ever stops changing, the inductor would just behave like a shorted section of a circuit, right? Wouldn't the capacitor discharge through it?



In terms of voltage drop - if the current through the resistor were ever to reach $0.2A$, that would mean that the entirety of the voltage is dropping through the resistor. There is no voltage drop through the inductor.



Buuut, since the inductor and the capacitor are in parallel, wouldn't that automatically mean there MUST be no charge on the capacitor either?



Is my book wrong in saying after an infinite amount of time with the switch closed there will be a 10-volt difference across the capacitor? Thanks!










share|cite|improve this question











$endgroup$




I've been staring at this for 10 minutes and I'm soooo confused. Hopefully, you guys can help!



enter image description here



So, let's say we close the switch. From what I understand, the capacitor will charge up to $10V$ almost instantaneously, while no current will flow through the inductor. At the very beginning, there'll be $0.2A$ flowing through the resistor.



But what happens if we leave the switch closed for a long time?



My book says the current through the inductor would pick up to $0.2A$, while the current through the capacitor drops to $0A$.



However, that seems wrong to me...if the current through the inductor ever stops changing, the inductor would just behave like a shorted section of a circuit, right? Wouldn't the capacitor discharge through it?



In terms of voltage drop - if the current through the resistor were ever to reach $0.2A$, that would mean that the entirety of the voltage is dropping through the resistor. There is no voltage drop through the inductor.



Buuut, since the inductor and the capacitor are in parallel, wouldn't that automatically mean there MUST be no charge on the capacitor either?



Is my book wrong in saying after an infinite amount of time with the switch closed there will be a 10-volt difference across the capacitor? Thanks!







homework-and-exercises electricity electric-circuits capacitance electromagnetic-induction






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 11 hours ago







Joshua Ronis

















asked 13 hours ago









Joshua RonisJoshua Ronis

1,3322520




1,3322520







  • 1




    $begingroup$
    Shouldn't I = 0.2A in the beginning
    $endgroup$
    – Starboy
    13 hours ago










  • $begingroup$
    @Starboy fixing it now! Thanks!
    $endgroup$
    – Joshua Ronis
    11 hours ago












  • 1




    $begingroup$
    Shouldn't I = 0.2A in the beginning
    $endgroup$
    – Starboy
    13 hours ago










  • $begingroup$
    @Starboy fixing it now! Thanks!
    $endgroup$
    – Joshua Ronis
    11 hours ago







1




1




$begingroup$
Shouldn't I = 0.2A in the beginning
$endgroup$
– Starboy
13 hours ago




$begingroup$
Shouldn't I = 0.2A in the beginning
$endgroup$
– Starboy
13 hours ago












$begingroup$
@Starboy fixing it now! Thanks!
$endgroup$
– Joshua Ronis
11 hours ago




$begingroup$
@Starboy fixing it now! Thanks!
$endgroup$
– Joshua Ronis
11 hours ago










5 Answers
5






active

oldest

votes


















3












$begingroup$


My book says the current through the inductor would pick up to 0.2A,
while the current through the capacitor drops to 0A.




This is correct. To find the DC steady state solution for this circuit, replace the inductor with a (ideal) wire and replace the capacitor with an open-circuit.



Why? In DC steady state (the solution as $trightarrowinfty$), all the circuit voltages and currents are constant.



Now, recall that the voltage across an (ideal) inductor is given by



$$v_L = Lfracdi_Ldt$$



and so, since the inductor current is constant, the voltage across the inductor is zero. This is why you can replace the inductor with a wire.



For the (ideal) capacitor, the current through is given by



$$i_C = C fracdv_Cdt$$



and so, since the capacitor voltage is constant, the current through the capacitor is zero. This why you can replace the capacitor with an open-circuit.



In this case, it follows that both the capacitor current and voltage are zero in DC steady state.




Is my book wrong in saying after an infinite amount of time with the
switch closed there will be a 10-volt difference across the capacitor?




Yes, if your book states that the capacitor has non-zero voltage across at infinite time, it is wrong for the reason I give above.




Tangential addendum:




From what I understand, the capacitor will charge up to 10V almost
instantaneously, while no current will flow through the inductor.




That's not correct. As the capacitor charges, the current through the inductor must increase and this inductor current means that the capacitor voltage can never reach 10V (that would require zero inductor current). This could shown by solving for the step response of the capacitor voltage which is beyond the scope of the question. However, this circuit is easily simulated with LT Spice and I've attached a plot of the capacitor voltage just after the switch is closed. See that the maximum voltage is not quite 4V.



enter image description here






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    I think your book is correct. After an infinite amount of time with the switch closed there will be no potential difference across the capacitor, there will be no current through the capacitor and there will be stationary current $0.2$ A through the inductor and the resistor. Do you see any contradictions in this picture?






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      The thing is the book says there is a potential of 10 volts across the capacitor. In that case, wouldn't it try to discharge through the inductor?
      $endgroup$
      – Joshua Ronis
      11 hours ago










    • $begingroup$
      @Joshua Ronis, This looks strange. The nonzero potential difference across the capacitor means that current through the inductor must change with time.
      $endgroup$
      – Gec
      11 hours ago



















    1












    $begingroup$

    From my knowledge, when you close the switch, a Back-emf will be indced across the inductor which will be equal to 10 V. Now since the inductor and capacitor are connected in parallel , the Voltage across them will always be the same ( Back emf ) . Now you can apply Kirchoff's loop law in the loop containing the battery, resistor and inductor and conclude that the magnitude of back-emf decreases with time , and hence the charge on the capacitor. After a long time , the back emf across the inductor as well as the charge on the capacitor will be zero and both will behave like short-circuited paths and the current through the resistor will be 0.2A






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      Good question, as the cap is charging the inductor back emf is decreasing, back emf is 0 at infinity time. Yes the cap will certainly have 10v as long as the switch is closed. The interesting part is what happens to the charge on the cap, I believe it eventually goes to zero because the bottom of the cap will be at 10v at an infinite time.






      share|cite|improve this answer









      $endgroup$




















        1












        $begingroup$

        The basic rules for ideal capacitors and inductors are as follows:



        You can’t change the voltage across an ideal capacitor instantaneously.
        You can’t change the current through an ideal inductor instantaneously.



        So, when you say,”…the capacitor will charge up to 10V almost instantaneously” is incorrect. But you are correct that that the current through an ideal inductor cannot change instantaneously.



        Now looking at your circuit diagram it appears that just prior to closing the switch, there is a charge Q on the capacitor. Then that means the voltage across the capacitor is



        $$V_C=fracQC$$



        Now when the switch is closed for a long time, the following rules apply to ideal capacitor and inductors.



        The capacitor looks like an open circuit.
        The inductor looks like a short circuit.



        That means since the inductor looks like a short circuit, the current through the inductor is simply 10/50=0.2A.



        Since the capacitor looks like an open circuit, the current through it must be zero. But the voltage will be 10 V.



        In short, your book is correct.



        Hope this helps.






        share|cite|improve this answer









        $endgroup$












        • $begingroup$
          Since capacitor and inductor are parallel, shouldn't the voltage across the inductor be 10V too? That means current through the inductor is changing ( steady state has not been reached)
          $endgroup$
          – Starboy
          2 hours ago











        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "151"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469722%2finductor-and-capacitor-in-parallel%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$


        My book says the current through the inductor would pick up to 0.2A,
        while the current through the capacitor drops to 0A.




        This is correct. To find the DC steady state solution for this circuit, replace the inductor with a (ideal) wire and replace the capacitor with an open-circuit.



        Why? In DC steady state (the solution as $trightarrowinfty$), all the circuit voltages and currents are constant.



        Now, recall that the voltage across an (ideal) inductor is given by



        $$v_L = Lfracdi_Ldt$$



        and so, since the inductor current is constant, the voltage across the inductor is zero. This is why you can replace the inductor with a wire.



        For the (ideal) capacitor, the current through is given by



        $$i_C = C fracdv_Cdt$$



        and so, since the capacitor voltage is constant, the current through the capacitor is zero. This why you can replace the capacitor with an open-circuit.



        In this case, it follows that both the capacitor current and voltage are zero in DC steady state.




        Is my book wrong in saying after an infinite amount of time with the
        switch closed there will be a 10-volt difference across the capacitor?




        Yes, if your book states that the capacitor has non-zero voltage across at infinite time, it is wrong for the reason I give above.




        Tangential addendum:




        From what I understand, the capacitor will charge up to 10V almost
        instantaneously, while no current will flow through the inductor.




        That's not correct. As the capacitor charges, the current through the inductor must increase and this inductor current means that the capacitor voltage can never reach 10V (that would require zero inductor current). This could shown by solving for the step response of the capacitor voltage which is beyond the scope of the question. However, this circuit is easily simulated with LT Spice and I've attached a plot of the capacitor voltage just after the switch is closed. See that the maximum voltage is not quite 4V.



        enter image description here






        share|cite|improve this answer











        $endgroup$

















          3












          $begingroup$


          My book says the current through the inductor would pick up to 0.2A,
          while the current through the capacitor drops to 0A.




          This is correct. To find the DC steady state solution for this circuit, replace the inductor with a (ideal) wire and replace the capacitor with an open-circuit.



          Why? In DC steady state (the solution as $trightarrowinfty$), all the circuit voltages and currents are constant.



          Now, recall that the voltage across an (ideal) inductor is given by



          $$v_L = Lfracdi_Ldt$$



          and so, since the inductor current is constant, the voltage across the inductor is zero. This is why you can replace the inductor with a wire.



          For the (ideal) capacitor, the current through is given by



          $$i_C = C fracdv_Cdt$$



          and so, since the capacitor voltage is constant, the current through the capacitor is zero. This why you can replace the capacitor with an open-circuit.



          In this case, it follows that both the capacitor current and voltage are zero in DC steady state.




          Is my book wrong in saying after an infinite amount of time with the
          switch closed there will be a 10-volt difference across the capacitor?




          Yes, if your book states that the capacitor has non-zero voltage across at infinite time, it is wrong for the reason I give above.




          Tangential addendum:




          From what I understand, the capacitor will charge up to 10V almost
          instantaneously, while no current will flow through the inductor.




          That's not correct. As the capacitor charges, the current through the inductor must increase and this inductor current means that the capacitor voltage can never reach 10V (that would require zero inductor current). This could shown by solving for the step response of the capacitor voltage which is beyond the scope of the question. However, this circuit is easily simulated with LT Spice and I've attached a plot of the capacitor voltage just after the switch is closed. See that the maximum voltage is not quite 4V.



          enter image description here






          share|cite|improve this answer











          $endgroup$















            3












            3








            3





            $begingroup$


            My book says the current through the inductor would pick up to 0.2A,
            while the current through the capacitor drops to 0A.




            This is correct. To find the DC steady state solution for this circuit, replace the inductor with a (ideal) wire and replace the capacitor with an open-circuit.



            Why? In DC steady state (the solution as $trightarrowinfty$), all the circuit voltages and currents are constant.



            Now, recall that the voltage across an (ideal) inductor is given by



            $$v_L = Lfracdi_Ldt$$



            and so, since the inductor current is constant, the voltage across the inductor is zero. This is why you can replace the inductor with a wire.



            For the (ideal) capacitor, the current through is given by



            $$i_C = C fracdv_Cdt$$



            and so, since the capacitor voltage is constant, the current through the capacitor is zero. This why you can replace the capacitor with an open-circuit.



            In this case, it follows that both the capacitor current and voltage are zero in DC steady state.




            Is my book wrong in saying after an infinite amount of time with the
            switch closed there will be a 10-volt difference across the capacitor?




            Yes, if your book states that the capacitor has non-zero voltage across at infinite time, it is wrong for the reason I give above.




            Tangential addendum:




            From what I understand, the capacitor will charge up to 10V almost
            instantaneously, while no current will flow through the inductor.




            That's not correct. As the capacitor charges, the current through the inductor must increase and this inductor current means that the capacitor voltage can never reach 10V (that would require zero inductor current). This could shown by solving for the step response of the capacitor voltage which is beyond the scope of the question. However, this circuit is easily simulated with LT Spice and I've attached a plot of the capacitor voltage just after the switch is closed. See that the maximum voltage is not quite 4V.



            enter image description here






            share|cite|improve this answer











            $endgroup$




            My book says the current through the inductor would pick up to 0.2A,
            while the current through the capacitor drops to 0A.




            This is correct. To find the DC steady state solution for this circuit, replace the inductor with a (ideal) wire and replace the capacitor with an open-circuit.



            Why? In DC steady state (the solution as $trightarrowinfty$), all the circuit voltages and currents are constant.



            Now, recall that the voltage across an (ideal) inductor is given by



            $$v_L = Lfracdi_Ldt$$



            and so, since the inductor current is constant, the voltage across the inductor is zero. This is why you can replace the inductor with a wire.



            For the (ideal) capacitor, the current through is given by



            $$i_C = C fracdv_Cdt$$



            and so, since the capacitor voltage is constant, the current through the capacitor is zero. This why you can replace the capacitor with an open-circuit.



            In this case, it follows that both the capacitor current and voltage are zero in DC steady state.




            Is my book wrong in saying after an infinite amount of time with the
            switch closed there will be a 10-volt difference across the capacitor?




            Yes, if your book states that the capacitor has non-zero voltage across at infinite time, it is wrong for the reason I give above.




            Tangential addendum:




            From what I understand, the capacitor will charge up to 10V almost
            instantaneously, while no current will flow through the inductor.




            That's not correct. As the capacitor charges, the current through the inductor must increase and this inductor current means that the capacitor voltage can never reach 10V (that would require zero inductor current). This could shown by solving for the step response of the capacitor voltage which is beyond the scope of the question. However, this circuit is easily simulated with LT Spice and I've attached a plot of the capacitor voltage just after the switch is closed. See that the maximum voltage is not quite 4V.



            enter image description here







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 4 hours ago

























            answered 5 hours ago









            Alfred CentauriAlfred Centauri

            48.6k350153




            48.6k350153





















                2












                $begingroup$

                I think your book is correct. After an infinite amount of time with the switch closed there will be no potential difference across the capacitor, there will be no current through the capacitor and there will be stationary current $0.2$ A through the inductor and the resistor. Do you see any contradictions in this picture?






                share|cite|improve this answer









                $endgroup$












                • $begingroup$
                  The thing is the book says there is a potential of 10 volts across the capacitor. In that case, wouldn't it try to discharge through the inductor?
                  $endgroup$
                  – Joshua Ronis
                  11 hours ago










                • $begingroup$
                  @Joshua Ronis, This looks strange. The nonzero potential difference across the capacitor means that current through the inductor must change with time.
                  $endgroup$
                  – Gec
                  11 hours ago
















                2












                $begingroup$

                I think your book is correct. After an infinite amount of time with the switch closed there will be no potential difference across the capacitor, there will be no current through the capacitor and there will be stationary current $0.2$ A through the inductor and the resistor. Do you see any contradictions in this picture?






                share|cite|improve this answer









                $endgroup$












                • $begingroup$
                  The thing is the book says there is a potential of 10 volts across the capacitor. In that case, wouldn't it try to discharge through the inductor?
                  $endgroup$
                  – Joshua Ronis
                  11 hours ago










                • $begingroup$
                  @Joshua Ronis, This looks strange. The nonzero potential difference across the capacitor means that current through the inductor must change with time.
                  $endgroup$
                  – Gec
                  11 hours ago














                2












                2








                2





                $begingroup$

                I think your book is correct. After an infinite amount of time with the switch closed there will be no potential difference across the capacitor, there will be no current through the capacitor and there will be stationary current $0.2$ A through the inductor and the resistor. Do you see any contradictions in this picture?






                share|cite|improve this answer









                $endgroup$



                I think your book is correct. After an infinite amount of time with the switch closed there will be no potential difference across the capacitor, there will be no current through the capacitor and there will be stationary current $0.2$ A through the inductor and the resistor. Do you see any contradictions in this picture?







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 12 hours ago









                GecGec

                932211




                932211











                • $begingroup$
                  The thing is the book says there is a potential of 10 volts across the capacitor. In that case, wouldn't it try to discharge through the inductor?
                  $endgroup$
                  – Joshua Ronis
                  11 hours ago










                • $begingroup$
                  @Joshua Ronis, This looks strange. The nonzero potential difference across the capacitor means that current through the inductor must change with time.
                  $endgroup$
                  – Gec
                  11 hours ago

















                • $begingroup$
                  The thing is the book says there is a potential of 10 volts across the capacitor. In that case, wouldn't it try to discharge through the inductor?
                  $endgroup$
                  – Joshua Ronis
                  11 hours ago










                • $begingroup$
                  @Joshua Ronis, This looks strange. The nonzero potential difference across the capacitor means that current through the inductor must change with time.
                  $endgroup$
                  – Gec
                  11 hours ago
















                $begingroup$
                The thing is the book says there is a potential of 10 volts across the capacitor. In that case, wouldn't it try to discharge through the inductor?
                $endgroup$
                – Joshua Ronis
                11 hours ago




                $begingroup$
                The thing is the book says there is a potential of 10 volts across the capacitor. In that case, wouldn't it try to discharge through the inductor?
                $endgroup$
                – Joshua Ronis
                11 hours ago












                $begingroup$
                @Joshua Ronis, This looks strange. The nonzero potential difference across the capacitor means that current through the inductor must change with time.
                $endgroup$
                – Gec
                11 hours ago





                $begingroup$
                @Joshua Ronis, This looks strange. The nonzero potential difference across the capacitor means that current through the inductor must change with time.
                $endgroup$
                – Gec
                11 hours ago












                1












                $begingroup$

                From my knowledge, when you close the switch, a Back-emf will be indced across the inductor which will be equal to 10 V. Now since the inductor and capacitor are connected in parallel , the Voltage across them will always be the same ( Back emf ) . Now you can apply Kirchoff's loop law in the loop containing the battery, resistor and inductor and conclude that the magnitude of back-emf decreases with time , and hence the charge on the capacitor. After a long time , the back emf across the inductor as well as the charge on the capacitor will be zero and both will behave like short-circuited paths and the current through the resistor will be 0.2A






                share|cite|improve this answer









                $endgroup$

















                  1












                  $begingroup$

                  From my knowledge, when you close the switch, a Back-emf will be indced across the inductor which will be equal to 10 V. Now since the inductor and capacitor are connected in parallel , the Voltage across them will always be the same ( Back emf ) . Now you can apply Kirchoff's loop law in the loop containing the battery, resistor and inductor and conclude that the magnitude of back-emf decreases with time , and hence the charge on the capacitor. After a long time , the back emf across the inductor as well as the charge on the capacitor will be zero and both will behave like short-circuited paths and the current through the resistor will be 0.2A






                  share|cite|improve this answer









                  $endgroup$















                    1












                    1








                    1





                    $begingroup$

                    From my knowledge, when you close the switch, a Back-emf will be indced across the inductor which will be equal to 10 V. Now since the inductor and capacitor are connected in parallel , the Voltage across them will always be the same ( Back emf ) . Now you can apply Kirchoff's loop law in the loop containing the battery, resistor and inductor and conclude that the magnitude of back-emf decreases with time , and hence the charge on the capacitor. After a long time , the back emf across the inductor as well as the charge on the capacitor will be zero and both will behave like short-circuited paths and the current through the resistor will be 0.2A






                    share|cite|improve this answer









                    $endgroup$



                    From my knowledge, when you close the switch, a Back-emf will be indced across the inductor which will be equal to 10 V. Now since the inductor and capacitor are connected in parallel , the Voltage across them will always be the same ( Back emf ) . Now you can apply Kirchoff's loop law in the loop containing the battery, resistor and inductor and conclude that the magnitude of back-emf decreases with time , and hence the charge on the capacitor. After a long time , the back emf across the inductor as well as the charge on the capacitor will be zero and both will behave like short-circuited paths and the current through the resistor will be 0.2A







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 11 hours ago









                    StarboyStarboy

                    1568




                    1568





















                        1












                        $begingroup$

                        Good question, as the cap is charging the inductor back emf is decreasing, back emf is 0 at infinity time. Yes the cap will certainly have 10v as long as the switch is closed. The interesting part is what happens to the charge on the cap, I believe it eventually goes to zero because the bottom of the cap will be at 10v at an infinite time.






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Good question, as the cap is charging the inductor back emf is decreasing, back emf is 0 at infinity time. Yes the cap will certainly have 10v as long as the switch is closed. The interesting part is what happens to the charge on the cap, I believe it eventually goes to zero because the bottom of the cap will be at 10v at an infinite time.






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Good question, as the cap is charging the inductor back emf is decreasing, back emf is 0 at infinity time. Yes the cap will certainly have 10v as long as the switch is closed. The interesting part is what happens to the charge on the cap, I believe it eventually goes to zero because the bottom of the cap will be at 10v at an infinite time.






                            share|cite|improve this answer









                            $endgroup$



                            Good question, as the cap is charging the inductor back emf is decreasing, back emf is 0 at infinity time. Yes the cap will certainly have 10v as long as the switch is closed. The interesting part is what happens to the charge on the cap, I believe it eventually goes to zero because the bottom of the cap will be at 10v at an infinite time.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 11 hours ago









                            PhysicsDavePhysicsDave

                            1,07647




                            1,07647





















                                1












                                $begingroup$

                                The basic rules for ideal capacitors and inductors are as follows:



                                You can’t change the voltage across an ideal capacitor instantaneously.
                                You can’t change the current through an ideal inductor instantaneously.



                                So, when you say,”…the capacitor will charge up to 10V almost instantaneously” is incorrect. But you are correct that that the current through an ideal inductor cannot change instantaneously.



                                Now looking at your circuit diagram it appears that just prior to closing the switch, there is a charge Q on the capacitor. Then that means the voltage across the capacitor is



                                $$V_C=fracQC$$



                                Now when the switch is closed for a long time, the following rules apply to ideal capacitor and inductors.



                                The capacitor looks like an open circuit.
                                The inductor looks like a short circuit.



                                That means since the inductor looks like a short circuit, the current through the inductor is simply 10/50=0.2A.



                                Since the capacitor looks like an open circuit, the current through it must be zero. But the voltage will be 10 V.



                                In short, your book is correct.



                                Hope this helps.






                                share|cite|improve this answer









                                $endgroup$












                                • $begingroup$
                                  Since capacitor and inductor are parallel, shouldn't the voltage across the inductor be 10V too? That means current through the inductor is changing ( steady state has not been reached)
                                  $endgroup$
                                  – Starboy
                                  2 hours ago















                                1












                                $begingroup$

                                The basic rules for ideal capacitors and inductors are as follows:



                                You can’t change the voltage across an ideal capacitor instantaneously.
                                You can’t change the current through an ideal inductor instantaneously.



                                So, when you say,”…the capacitor will charge up to 10V almost instantaneously” is incorrect. But you are correct that that the current through an ideal inductor cannot change instantaneously.



                                Now looking at your circuit diagram it appears that just prior to closing the switch, there is a charge Q on the capacitor. Then that means the voltage across the capacitor is



                                $$V_C=fracQC$$



                                Now when the switch is closed for a long time, the following rules apply to ideal capacitor and inductors.



                                The capacitor looks like an open circuit.
                                The inductor looks like a short circuit.



                                That means since the inductor looks like a short circuit, the current through the inductor is simply 10/50=0.2A.



                                Since the capacitor looks like an open circuit, the current through it must be zero. But the voltage will be 10 V.



                                In short, your book is correct.



                                Hope this helps.






                                share|cite|improve this answer









                                $endgroup$












                                • $begingroup$
                                  Since capacitor and inductor are parallel, shouldn't the voltage across the inductor be 10V too? That means current through the inductor is changing ( steady state has not been reached)
                                  $endgroup$
                                  – Starboy
                                  2 hours ago













                                1












                                1








                                1





                                $begingroup$

                                The basic rules for ideal capacitors and inductors are as follows:



                                You can’t change the voltage across an ideal capacitor instantaneously.
                                You can’t change the current through an ideal inductor instantaneously.



                                So, when you say,”…the capacitor will charge up to 10V almost instantaneously” is incorrect. But you are correct that that the current through an ideal inductor cannot change instantaneously.



                                Now looking at your circuit diagram it appears that just prior to closing the switch, there is a charge Q on the capacitor. Then that means the voltage across the capacitor is



                                $$V_C=fracQC$$



                                Now when the switch is closed for a long time, the following rules apply to ideal capacitor and inductors.



                                The capacitor looks like an open circuit.
                                The inductor looks like a short circuit.



                                That means since the inductor looks like a short circuit, the current through the inductor is simply 10/50=0.2A.



                                Since the capacitor looks like an open circuit, the current through it must be zero. But the voltage will be 10 V.



                                In short, your book is correct.



                                Hope this helps.






                                share|cite|improve this answer









                                $endgroup$



                                The basic rules for ideal capacitors and inductors are as follows:



                                You can’t change the voltage across an ideal capacitor instantaneously.
                                You can’t change the current through an ideal inductor instantaneously.



                                So, when you say,”…the capacitor will charge up to 10V almost instantaneously” is incorrect. But you are correct that that the current through an ideal inductor cannot change instantaneously.



                                Now looking at your circuit diagram it appears that just prior to closing the switch, there is a charge Q on the capacitor. Then that means the voltage across the capacitor is



                                $$V_C=fracQC$$



                                Now when the switch is closed for a long time, the following rules apply to ideal capacitor and inductors.



                                The capacitor looks like an open circuit.
                                The inductor looks like a short circuit.



                                That means since the inductor looks like a short circuit, the current through the inductor is simply 10/50=0.2A.



                                Since the capacitor looks like an open circuit, the current through it must be zero. But the voltage will be 10 V.



                                In short, your book is correct.



                                Hope this helps.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered 2 hours ago









                                Bob DBob D

                                4,3402318




                                4,3402318











                                • $begingroup$
                                  Since capacitor and inductor are parallel, shouldn't the voltage across the inductor be 10V too? That means current through the inductor is changing ( steady state has not been reached)
                                  $endgroup$
                                  – Starboy
                                  2 hours ago
















                                • $begingroup$
                                  Since capacitor and inductor are parallel, shouldn't the voltage across the inductor be 10V too? That means current through the inductor is changing ( steady state has not been reached)
                                  $endgroup$
                                  – Starboy
                                  2 hours ago















                                $begingroup$
                                Since capacitor and inductor are parallel, shouldn't the voltage across the inductor be 10V too? That means current through the inductor is changing ( steady state has not been reached)
                                $endgroup$
                                – Starboy
                                2 hours ago




                                $begingroup$
                                Since capacitor and inductor are parallel, shouldn't the voltage across the inductor be 10V too? That means current through the inductor is changing ( steady state has not been reached)
                                $endgroup$
                                – Starboy
                                2 hours ago

















                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469722%2finductor-and-capacitor-in-parallel%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                На ростанях Змест Гісторыя напісання | Месца дзеяння | Час дзеяння | Назва | Праблематыка трылогіі | Аўтабіяграфічнасць | Трылогія ў тэатры і кіно | Пераклады | У культуры | Зноскі Літаратура | Спасылкі | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 зменаАкадэмік МІЦКЕВІЧ Канстанцін Міхайлавіч (Якуб Колас) Прадмова М. І. Мушынскага, доктара філалагічных навук, члена-карэспандэнта Нацыянальнай акадэміі навук Рэспублікі Беларусь, прафесараНашаніўцы ў трылогіі Якуба Коласа «На ростанях»: вобразы і прататыпы125 лет Янке МавруКнижно-документальная выставка к 125-летию со дня рождения Якуба Коласа (1882—1956)Колас Якуб. Новая зямля (паэма), На ростанях (трылогія). Сулкоўскі Уладзімір. Радзіма Якуба Коласа (серыял жывапісных палотнаў)Вокладка кнігіІлюстрацыя М. С. БасалыгіНа ростаняхАўдыёверсія трылогііВ. Жолтак У Люсiнскай школе 1959

                                Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                                Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп