Ambiguity in the definition of entropyHow are possible microstates discerned in Gibb's entropy formula?Statistical interpretation of EntropyEntropy as an arrow of timeWhat precisely does the 2nd law of thermo state, considering that entropy depends on how we define macrostate?The statistical interpretation of EntropyWhat is the cause for the inclusion of 'thermal equilibrium' in the statement of Ergodic hypothesis?Do the results of statistical mechanics depend upon the choice of macrostates?Entropy definition, additivity, laws in different ensemblesDefinition of entropy and other StatMech variablesWhat is the definition of entropy in microcanonical ensemble?

What Exploit Are These User Agents Trying to Use?

Calculate the Mean mean of two numbers

Finding the reason behind the value of the integral.

Was the Stack Exchange "Happy April Fools" page fitting with the '90's code?

How to remove border from elements in the last row?

How to enclose theorems and definition in rectangles?

How to stretch the corners of this image so that it looks like a perfect rectangle?

What are the G forces leaving Earth orbit?

What is the fastest integer factorization to break RSA?

Do creatures with a listed speed of "0 ft., fly 30 ft. (hover)" ever touch the ground?

Send out email when Apex Queueable fails and test it

Machine learning testing data

How to install cross-compiler on Ubuntu 18.04?

Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)

Why are UK visa biometrics appointments suspended at USCIS Application Support Centers?

Can I hook these wires up to find the connection to a dead outlet?

In Bayesian inference, why are some terms dropped from the posterior predictive?

Are British MPs missing the point, with these 'Indicative Votes'?

Notepad++ delete until colon for every line with replace all

Why didn't Boeing produce its own regional jet?

How do conventional missiles fly?

Does int main() need a declaration on C++?

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

How exploitable/balanced is this homebrew spell: Spell Permanency?



Ambiguity in the definition of entropy


How are possible microstates discerned in Gibb's entropy formula?Statistical interpretation of EntropyEntropy as an arrow of timeWhat precisely does the 2nd law of thermo state, considering that entropy depends on how we define macrostate?The statistical interpretation of EntropyWhat is the cause for the inclusion of 'thermal equilibrium' in the statement of Ergodic hypothesis?Do the results of statistical mechanics depend upon the choice of macrostates?Entropy definition, additivity, laws in different ensemblesDefinition of entropy and other StatMech variablesWhat is the definition of entropy in microcanonical ensemble?













1












$begingroup$


The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?










      share|cite|improve this question











      $endgroup$




      The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?







      statistical-mechanics entropy






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 30 mins ago







      PiKindOfGuy

















      asked 1 hour ago









      PiKindOfGuyPiKindOfGuy

      596622




      596622




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



          Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.






          share|cite|improve this answer









          $endgroup$




















            3












            $begingroup$

            Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "151"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470202%2fambiguity-in-the-definition-of-entropy%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



              Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.






              share|cite|improve this answer









              $endgroup$

















                5












                $begingroup$

                Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



                Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.






                share|cite|improve this answer









                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



                  Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.






                  share|cite|improve this answer









                  $endgroup$



                  Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.



                  Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 40 mins ago









                  AcccumulationAcccumulation

                  2,774312




                  2,774312





















                      3












                      $begingroup$

                      Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.






                      share|cite|improve this answer









                      $endgroup$

















                        3












                        $begingroup$

                        Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.






                        share|cite|improve this answer









                        $endgroup$















                          3












                          3








                          3





                          $begingroup$

                          Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.






                          share|cite|improve this answer









                          $endgroup$



                          Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 39 mins ago









                          CR DrostCR Drost

                          22.5k11961




                          22.5k11961



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Physics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470202%2fambiguity-in-the-definition-of-entropy%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

                              Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

                              Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery