What kind of algorithm should I choose for this music classification system?2019 Community Moderator ElectionChoose binary classification algorithmWhat is the best technique/algorithm to compare trees changes?Classification when one class is otherBuilding Customers/Patient ProfilesWhat kind of classification should I use?Splitting hold-out sample and training sample only once?Unsupervised Anomaly Detection in ImagesAre there any very good APIs for matching similar images?Selecting ML algorithm for music compositionML algorithm for Music Features

Is it a bad idea to plug the other end of ESD strap to wall ground?

What do you call someone who asks many questions?

My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?

How do conventional missiles fly?

How do I exit BASH while loop using modulus operator?

Knowledge-based authentication using Domain-driven Design in C#

What is the opposite of "eschatology"?

Why is the sentence "Das ist eine Nase" correct?

Avoiding the "not like other girls" trope?

Using "tail" to follow a file without displaying the most recent lines

Was the Stack Exchange "Happy April Fools" page fitting with the '90's code?

OP Amp not amplifying audio signal

Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)

Does int main() need a declaration on C++?

How to prevent "they're falling in love" trope

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

How to remove border from elements in the last row?

Forgetting the musical notes while performing in concert

What is a Samsaran Word™?

Can someone clarify Hamming's notion of important problems in relation to modern academia?

What is an equivalently powerful replacement spell for the Yuan-Ti's Suggestion spell?

Getting extremely large arrows with tikzcd

"the same as" in a sentence

Does the Cone of Cold spell freeze water?



What kind of algorithm should I choose for this music classification system?



2019 Community Moderator ElectionChoose binary classification algorithmWhat is the best technique/algorithm to compare trees changes?Classification when one class is otherBuilding Customers/Patient ProfilesWhat kind of classification should I use?Splitting hold-out sample and training sample only once?Unsupervised Anomaly Detection in ImagesAre there any very good APIs for matching similar images?Selecting ML algorithm for music compositionML algorithm for Music Features










0












$begingroup$


I have in mind a program for analyzing short fragments of music, categorizing them as "good" or "bad". This would be part of a larger program that searches for larger good phrases and whole pieces.



The idea now is to take a fragment of music, X, and compare it to known good sample fragments G_1, G_2, ... etc. and get a rank of similarity to each one. Then compare it to known bad fragments B_1, B_2, B_3, .. etc.



"Good" music is subjective of course, but this program would work with G and B samples that I hand-optimized according to my own tastes.



Good music is then music that resembles at least one of the G's, while resembling none of the B's. A fragment that has strong similarity to both G's and B's is probably bad: The B's have veto power.



So, how to determine similarity? Musical fragments can be represented by image-like matrices of pixels. The vertical axis is pitch and the horizontal axis is time. If a note of pitch P_1 occurs between times T_beg and T_end, then that's like drawing a little line between (T_beg, P_1) and (T_end, P_1).



An sample X to be classified can be convolved, in a sense, with a known sample K. It can be transposed up or down (vertical shifting) or moved left or right in time (or stretched in time, or other alterations) and each transposition would be superimposed on the G or B sample. I'm not too familiar with convolution but I think that overlapping pixels are multiplied and the sum of all is taken. The transposition with the brightest result pixel is a good indication of how similar X is to the K sample: it's magnitude becomes the measure of similarity.



Dark pixels don't matter much. A preponderance of dark pixels doesn't make music bad. It just means the real pattern isn't found in those locations. A bright match to a known bad fragment is what makes music bad.



I'd like to perform these computations with NumPy or a similar language optimized for matrix or image computations.



Can I get some idea whether there is a name for this kind of operation, and where to look for efficient implementations of it? Boosting speed with a GPU would be a bonus.









share









$endgroup$
















    0












    $begingroup$


    I have in mind a program for analyzing short fragments of music, categorizing them as "good" or "bad". This would be part of a larger program that searches for larger good phrases and whole pieces.



    The idea now is to take a fragment of music, X, and compare it to known good sample fragments G_1, G_2, ... etc. and get a rank of similarity to each one. Then compare it to known bad fragments B_1, B_2, B_3, .. etc.



    "Good" music is subjective of course, but this program would work with G and B samples that I hand-optimized according to my own tastes.



    Good music is then music that resembles at least one of the G's, while resembling none of the B's. A fragment that has strong similarity to both G's and B's is probably bad: The B's have veto power.



    So, how to determine similarity? Musical fragments can be represented by image-like matrices of pixels. The vertical axis is pitch and the horizontal axis is time. If a note of pitch P_1 occurs between times T_beg and T_end, then that's like drawing a little line between (T_beg, P_1) and (T_end, P_1).



    An sample X to be classified can be convolved, in a sense, with a known sample K. It can be transposed up or down (vertical shifting) or moved left or right in time (or stretched in time, or other alterations) and each transposition would be superimposed on the G or B sample. I'm not too familiar with convolution but I think that overlapping pixels are multiplied and the sum of all is taken. The transposition with the brightest result pixel is a good indication of how similar X is to the K sample: it's magnitude becomes the measure of similarity.



    Dark pixels don't matter much. A preponderance of dark pixels doesn't make music bad. It just means the real pattern isn't found in those locations. A bright match to a known bad fragment is what makes music bad.



    I'd like to perform these computations with NumPy or a similar language optimized for matrix or image computations.



    Can I get some idea whether there is a name for this kind of operation, and where to look for efficient implementations of it? Boosting speed with a GPU would be a bonus.









    share









    $endgroup$














      0












      0








      0





      $begingroup$


      I have in mind a program for analyzing short fragments of music, categorizing them as "good" or "bad". This would be part of a larger program that searches for larger good phrases and whole pieces.



      The idea now is to take a fragment of music, X, and compare it to known good sample fragments G_1, G_2, ... etc. and get a rank of similarity to each one. Then compare it to known bad fragments B_1, B_2, B_3, .. etc.



      "Good" music is subjective of course, but this program would work with G and B samples that I hand-optimized according to my own tastes.



      Good music is then music that resembles at least one of the G's, while resembling none of the B's. A fragment that has strong similarity to both G's and B's is probably bad: The B's have veto power.



      So, how to determine similarity? Musical fragments can be represented by image-like matrices of pixels. The vertical axis is pitch and the horizontal axis is time. If a note of pitch P_1 occurs between times T_beg and T_end, then that's like drawing a little line between (T_beg, P_1) and (T_end, P_1).



      An sample X to be classified can be convolved, in a sense, with a known sample K. It can be transposed up or down (vertical shifting) or moved left or right in time (or stretched in time, or other alterations) and each transposition would be superimposed on the G or B sample. I'm not too familiar with convolution but I think that overlapping pixels are multiplied and the sum of all is taken. The transposition with the brightest result pixel is a good indication of how similar X is to the K sample: it's magnitude becomes the measure of similarity.



      Dark pixels don't matter much. A preponderance of dark pixels doesn't make music bad. It just means the real pattern isn't found in those locations. A bright match to a known bad fragment is what makes music bad.



      I'd like to perform these computations with NumPy or a similar language optimized for matrix or image computations.



      Can I get some idea whether there is a name for this kind of operation, and where to look for efficient implementations of it? Boosting speed with a GPU would be a bonus.









      share









      $endgroup$




      I have in mind a program for analyzing short fragments of music, categorizing them as "good" or "bad". This would be part of a larger program that searches for larger good phrases and whole pieces.



      The idea now is to take a fragment of music, X, and compare it to known good sample fragments G_1, G_2, ... etc. and get a rank of similarity to each one. Then compare it to known bad fragments B_1, B_2, B_3, .. etc.



      "Good" music is subjective of course, but this program would work with G and B samples that I hand-optimized according to my own tastes.



      Good music is then music that resembles at least one of the G's, while resembling none of the B's. A fragment that has strong similarity to both G's and B's is probably bad: The B's have veto power.



      So, how to determine similarity? Musical fragments can be represented by image-like matrices of pixels. The vertical axis is pitch and the horizontal axis is time. If a note of pitch P_1 occurs between times T_beg and T_end, then that's like drawing a little line between (T_beg, P_1) and (T_end, P_1).



      An sample X to be classified can be convolved, in a sense, with a known sample K. It can be transposed up or down (vertical shifting) or moved left or right in time (or stretched in time, or other alterations) and each transposition would be superimposed on the G or B sample. I'm not too familiar with convolution but I think that overlapping pixels are multiplied and the sum of all is taken. The transposition with the brightest result pixel is a good indication of how similar X is to the K sample: it's magnitude becomes the measure of similarity.



      Dark pixels don't matter much. A preponderance of dark pixels doesn't make music bad. It just means the real pattern isn't found in those locations. A bright match to a known bad fragment is what makes music bad.



      I'd like to perform these computations with NumPy or a similar language optimized for matrix or image computations.



      Can I get some idea whether there is a name for this kind of operation, and where to look for efficient implementations of it? Boosting speed with a GPU would be a bonus.







      machine-learning classification numpy gpu





      share












      share










      share



      share










      asked 4 mins ago









      composerMikecomposerMike

      1184




      1184




















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48489%2fwhat-kind-of-algorithm-should-i-choose-for-this-music-classification-system%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48489%2fwhat-kind-of-algorithm-should-i-choose-for-this-music-classification-system%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)2019 Community Moderator ElectionError when checking : expected dense_1_input to have shape (None, 5) but got array with shape (200, 1)Error 'Expected 2D array, got 1D array instead:'ValueError: Error when checking input: expected lstm_41_input to have 3 dimensions, but got array with shape (40000,100)ValueError: Error when checking target: expected dense_1 to have shape (7,) but got array with shape (1,)ValueError: Error when checking target: expected dense_2 to have shape (1,) but got array with shape (0,)Keras exception: ValueError: Error when checking input: expected conv2d_1_input to have shape (150, 150, 3) but got array with shape (256, 256, 3)Steps taking too long to completewhen checking input: expected dense_1_input to have shape (13328,) but got array with shape (317,)ValueError: Error when checking target: expected dense_3 to have shape (None, 1) but got array with shape (7715, 40000)Keras exception: Error when checking input: expected dense_input to have shape (2,) but got array with shape (1,)

          Ружовы пелікан Змест Знешні выгляд | Пашырэнне | Асаблівасці біялогіі | Літаратура | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 змена/ 22697590 Сістэматыкана ВіківідахВыявына Вікісховішчы174693363011049382

          Illegal assignment from SObject to ContactFetching String, Id from Map - Illegal Assignment Id to Field / ObjectError: Compile Error: Illegal assignment from String to BooleanError: List has no rows for assignment to SObjectError on Test Class - System.QueryException: List has no rows for assignment to SObjectRemote action problemDML requires SObject or SObject list type error“Illegal assignment from List to List”Test Class Fail: Batch Class: System.QueryException: List has no rows for assignment to SObjectMapping to a user'List has no rows for assignment to SObject' Mystery