Strong empirical falsification of quantum mechanics based on vacuum energy density?Can the entropy of a subsystem exceed the maximum entropy of the system in quantum mechanics?Is broken supersymmetry compatible with a small cosmological constant?Vacuum energy: black hole evaporation and cosmology - a discrepancy?Why is Weinberg's prediction of omega sub lambda ($Omega_Lambda$) other than sophisiticated tautology?Bare Cosmological Constant and Fine-Tuning ProblemA simple proof of Bell's resultWhat's the relationship between temperature and density matrix?How do quantum fluctuations make up vacuum energy?Is quantum theory useful to describe the whole cosmos?Vacuum energy density equation clarification

How much theory knowledge is actually used while playing?

What is Cash Advance APR?

How to convince somebody that he is fit for something else, but not this job?

Why does the Sun have different day lengths, but not the gas giants?

Did the UK lift the requirement for registering SIM cards?

Review your own paper in Mathematics

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

What's the name of the logical fallacy where a debater extends a statement far beyond the original statement to make it true?

Creating two special characters

C++ copy constructor called at return

Pre-mixing cryogenic fuels and using only one fuel tank

What features enable the Su-25 Frogfoot to operate with such a wide variety of fuels?

What fields between the rationals and the reals allow a good notion of 2D distance?

Quoting Keynes in a lecture

What is the difference between lands and mana?

Strong empirical falsification of quantum mechanics based on vacuum energy density?

How does electrical safety system work on ISS?

Giving feedback to someone without sounding prejudiced

How could a planet have erratic days?

Short story about a deaf man, who cuts people tongues

awk assign to multiple variables at once

Which was the first story featuring espers?

Make a Bowl of Alphabet Soup

Biological Blimps: Propulsion



Strong empirical falsification of quantum mechanics based on vacuum energy density?


Can the entropy of a subsystem exceed the maximum entropy of the system in quantum mechanics?Is broken supersymmetry compatible with a small cosmological constant?Vacuum energy: black hole evaporation and cosmology - a discrepancy?Why is Weinberg's prediction of omega sub lambda ($Omega_Lambda$) other than sophisiticated tautology?Bare Cosmological Constant and Fine-Tuning ProblemA simple proof of Bell's resultWhat's the relationship between temperature and density matrix?How do quantum fluctuations make up vacuum energy?Is quantum theory useful to describe the whole cosmos?Vacuum energy density equation clarification













2












$begingroup$


It is well known that the observed energy density of the vacuum is many orders of magnitude less than the value calculated by quantum field theory. Published values range between 60 and 120 orders of magnitude, depending on which assumptions are made in the calculations. Why is this not universally acknowledged as strong empirical falsification of quantum mechanics?










share|cite|improve this question









New contributor




sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    What makes you think it is a falsification?
    $endgroup$
    – Gert
    4 hours ago










  • $begingroup$
    There is a discrepancy of 60-120 orders of magnitude between the prediction of QM and the experimental evidence.
    $endgroup$
    – sidharth chhabra
    4 hours ago










  • $begingroup$
    And this is proof of falsification? How?
    $endgroup$
    – Gert
    4 hours ago










  • $begingroup$
    What is "the value calculated by quantum field theory"? QFT includes an adjustable parameter, a constant term in the Lagrangian/Hamiltonian, which (if gravity were included) would contribute to the overall cosmological constant. In a generic QFT, this parameter can be adjusted to make the vacuum energy (or cosmological constant) whatever we want, including zero, albeit with a suspiciously extreme degree of fine tuning required. Are you asking about a specific model in which this parameter is fixed by some principle, so that it actually predicts a value for the vacuum energy?
    $endgroup$
    – Chiral Anomaly
    1 hour ago











  • $begingroup$
    The concept of falsification as outlined by Popper is usually not used in physics. Domains of validity are used instead.
    $endgroup$
    – lalala
    1 hour ago















2












$begingroup$


It is well known that the observed energy density of the vacuum is many orders of magnitude less than the value calculated by quantum field theory. Published values range between 60 and 120 orders of magnitude, depending on which assumptions are made in the calculations. Why is this not universally acknowledged as strong empirical falsification of quantum mechanics?










share|cite|improve this question









New contributor




sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    What makes you think it is a falsification?
    $endgroup$
    – Gert
    4 hours ago










  • $begingroup$
    There is a discrepancy of 60-120 orders of magnitude between the prediction of QM and the experimental evidence.
    $endgroup$
    – sidharth chhabra
    4 hours ago










  • $begingroup$
    And this is proof of falsification? How?
    $endgroup$
    – Gert
    4 hours ago










  • $begingroup$
    What is "the value calculated by quantum field theory"? QFT includes an adjustable parameter, a constant term in the Lagrangian/Hamiltonian, which (if gravity were included) would contribute to the overall cosmological constant. In a generic QFT, this parameter can be adjusted to make the vacuum energy (or cosmological constant) whatever we want, including zero, albeit with a suspiciously extreme degree of fine tuning required. Are you asking about a specific model in which this parameter is fixed by some principle, so that it actually predicts a value for the vacuum energy?
    $endgroup$
    – Chiral Anomaly
    1 hour ago











  • $begingroup$
    The concept of falsification as outlined by Popper is usually not used in physics. Domains of validity are used instead.
    $endgroup$
    – lalala
    1 hour ago













2












2








2





$begingroup$


It is well known that the observed energy density of the vacuum is many orders of magnitude less than the value calculated by quantum field theory. Published values range between 60 and 120 orders of magnitude, depending on which assumptions are made in the calculations. Why is this not universally acknowledged as strong empirical falsification of quantum mechanics?










share|cite|improve this question









New contributor




sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




It is well known that the observed energy density of the vacuum is many orders of magnitude less than the value calculated by quantum field theory. Published values range between 60 and 120 orders of magnitude, depending on which assumptions are made in the calculations. Why is this not universally acknowledged as strong empirical falsification of quantum mechanics?







quantum-mechanics quantum-field-theory energy vacuum cosmological-constant






share|cite|improve this question









New contributor




sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Ben Crowell

53.2k6165313




53.2k6165313






New contributor




sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









sidharth chhabrasidharth chhabra

1142




1142




New contributor




sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






sidharth chhabra is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    What makes you think it is a falsification?
    $endgroup$
    – Gert
    4 hours ago










  • $begingroup$
    There is a discrepancy of 60-120 orders of magnitude between the prediction of QM and the experimental evidence.
    $endgroup$
    – sidharth chhabra
    4 hours ago










  • $begingroup$
    And this is proof of falsification? How?
    $endgroup$
    – Gert
    4 hours ago










  • $begingroup$
    What is "the value calculated by quantum field theory"? QFT includes an adjustable parameter, a constant term in the Lagrangian/Hamiltonian, which (if gravity were included) would contribute to the overall cosmological constant. In a generic QFT, this parameter can be adjusted to make the vacuum energy (or cosmological constant) whatever we want, including zero, albeit with a suspiciously extreme degree of fine tuning required. Are you asking about a specific model in which this parameter is fixed by some principle, so that it actually predicts a value for the vacuum energy?
    $endgroup$
    – Chiral Anomaly
    1 hour ago











  • $begingroup$
    The concept of falsification as outlined by Popper is usually not used in physics. Domains of validity are used instead.
    $endgroup$
    – lalala
    1 hour ago
















  • $begingroup$
    What makes you think it is a falsification?
    $endgroup$
    – Gert
    4 hours ago










  • $begingroup$
    There is a discrepancy of 60-120 orders of magnitude between the prediction of QM and the experimental evidence.
    $endgroup$
    – sidharth chhabra
    4 hours ago










  • $begingroup$
    And this is proof of falsification? How?
    $endgroup$
    – Gert
    4 hours ago










  • $begingroup$
    What is "the value calculated by quantum field theory"? QFT includes an adjustable parameter, a constant term in the Lagrangian/Hamiltonian, which (if gravity were included) would contribute to the overall cosmological constant. In a generic QFT, this parameter can be adjusted to make the vacuum energy (or cosmological constant) whatever we want, including zero, albeit with a suspiciously extreme degree of fine tuning required. Are you asking about a specific model in which this parameter is fixed by some principle, so that it actually predicts a value for the vacuum energy?
    $endgroup$
    – Chiral Anomaly
    1 hour ago











  • $begingroup$
    The concept of falsification as outlined by Popper is usually not used in physics. Domains of validity are used instead.
    $endgroup$
    – lalala
    1 hour ago















$begingroup$
What makes you think it is a falsification?
$endgroup$
– Gert
4 hours ago




$begingroup$
What makes you think it is a falsification?
$endgroup$
– Gert
4 hours ago












$begingroup$
There is a discrepancy of 60-120 orders of magnitude between the prediction of QM and the experimental evidence.
$endgroup$
– sidharth chhabra
4 hours ago




$begingroup$
There is a discrepancy of 60-120 orders of magnitude between the prediction of QM and the experimental evidence.
$endgroup$
– sidharth chhabra
4 hours ago












$begingroup$
And this is proof of falsification? How?
$endgroup$
– Gert
4 hours ago




$begingroup$
And this is proof of falsification? How?
$endgroup$
– Gert
4 hours ago












$begingroup$
What is "the value calculated by quantum field theory"? QFT includes an adjustable parameter, a constant term in the Lagrangian/Hamiltonian, which (if gravity were included) would contribute to the overall cosmological constant. In a generic QFT, this parameter can be adjusted to make the vacuum energy (or cosmological constant) whatever we want, including zero, albeit with a suspiciously extreme degree of fine tuning required. Are you asking about a specific model in which this parameter is fixed by some principle, so that it actually predicts a value for the vacuum energy?
$endgroup$
– Chiral Anomaly
1 hour ago





$begingroup$
What is "the value calculated by quantum field theory"? QFT includes an adjustable parameter, a constant term in the Lagrangian/Hamiltonian, which (if gravity were included) would contribute to the overall cosmological constant. In a generic QFT, this parameter can be adjusted to make the vacuum energy (or cosmological constant) whatever we want, including zero, albeit with a suspiciously extreme degree of fine tuning required. Are you asking about a specific model in which this parameter is fixed by some principle, so that it actually predicts a value for the vacuum energy?
$endgroup$
– Chiral Anomaly
1 hour ago













$begingroup$
The concept of falsification as outlined by Popper is usually not used in physics. Domains of validity are used instead.
$endgroup$
– lalala
1 hour ago




$begingroup$
The concept of falsification as outlined by Popper is usually not used in physics. Domains of validity are used instead.
$endgroup$
– lalala
1 hour ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

Experimentally, based on cosmological observations, there seems to be a vacuum energy (the "dark energy" component of the cosmological energy budget), with a certain value. A the present epoch, there seems to be about three times as much vacuum/dark energy as there is "dark matter" and about fifteen or twenty times as much dark energy as there is visible matter. This concentration of dark energy poses two very serious puzzles, but neither of them is at all suggestive of a breakdown of quantum mechanics.



The first problem, mentioned in the question, is the "hierarchy" problem. There is no quantum mechanical prediction for the absolute energy density of vacuum. However, it is possible to make some very crude "guesstimates" about this quantity. We know that some new fundamental physics must take over at the Planck energy scale $E_P$, where gravitational interactions are in the deeply quantum regime. We may therefore guess that the vacuum energy density is proportional to $E_P^4$. (This is certainly not a prediction of quantum mechanics though. Strictly, according to quantum field theory, without including gravity, the energy of the vacuum is unobservable and therefore not even well defined.) The problem with the $propto E_P^4$ guess for the vacuum energy is that it is off by 275 nepers or so. But that does not falsify quantum mechanics, since our guess was not based on rigorous quantum theory anyway.



The other puzzle with the vacuum energy density is that its value at the present cosmological epoch is pretty close to the energy density of matter in the universe, even though there is no a priori reason why the two should be related. The fact that the (light plus dark) matter and dark energy densities are relatively close suggests that what we are observing as apparent vacuum energy might very well be something else entirely anyway. But what that "something else" might be, no one knows.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    "Quantum mechanics" is actually a very general, broad theory that "really", at least working from many more modern understandings of the topic, is about information, and more specifically, it is a language for writing theories that describe (in some way) physics in which information content is limited, just as relativity is actually a theory of space and time in which information propagation speed is limited. And moreover, that the information is limited in such a way that there are trade-offs between information determining various physical parameters of a system, and not a simplistic "pixelization". That is, in effect, what the "true" meaning of Planck's constant $hbar$, and the fact that $hbar > 0$, means. Check out Scott Aaronson's page here for the idea of quantum mechanics as a language for writing theories, instead of per se a theory in its own right:



    https://www.scottaaronson.com/democritus/lec9.html



    though it doesn't specifically touch on the "information limit" notion, for that, try:



    https://iopscience.iop.org/article/10.1088/0143-0807/36/1/015010



    e.g. section 3.8, mentions the idea of QM as an information-limited theory, at least in touching, though doesn't quite go about it in the same way as I had worked it out.



    The way then to "falsify" quantum mechanics would be to show an instance where its informational limits are violated, e.g. if someone finds a way to create a particle that has position and momentum (or another pair of incompatible physical parameters) more precisely defined than Heisenberg's limit allows. Merely finding a failure of certain theories built on it (e.g. "quantum field theories" - QFTs) to account for a cosmological parameter's value which is already going to be well in the range of those limits is not going to necessarily falsify QM, as another theory written in its language might still work and be able to account for that result, even spectacularly. It will simply falsify that particular theory built using it, namely Standard Model QFTs. (Whether QFTs entirely are out, at at least a fundamental level, is disputable, but the SM is at least guaranteed to have something wrong with it.)






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      Our back of the envelope prediction for the order of magnitude of the vacuum energy is indeed very wrong! However, keep in mind that



      1. It is possible to precisely fine-tune free-parameters of the theory to match the measurement. This is achieved through a delicate cancellation between so-called tree-level parameters and corrections. When we make the back of the envelope calculation, we implicitly assume that such cancellations don't occur.


      2. This isn't a test of quantum mechanics per se; but a test of a particular theory that obeys a combination of quantum mechanics and special relatively. Such theories are called quantum field theories. There are many such theories as we may introduce lots of types of fields and let them interact in lots of different ways.


      So, quantum mechanics isn't falsified as measurements of the vacuum energy don't directly test it. And even the theories that the measurements do test aren't falsified because we can find extremely fine-tuned combinations of parameters that match observations.



      The fact that fine-tuning is required is considered problematic and arguably means that our theories might be somewhat implausible; read about naturalness/fine-tuning in physics for more information.






      share|cite|improve this answer









      $endgroup$












        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "151"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        sidharth chhabra is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467939%2fstrong-empirical-falsification-of-quantum-mechanics-based-on-vacuum-energy-densi%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        Experimentally, based on cosmological observations, there seems to be a vacuum energy (the "dark energy" component of the cosmological energy budget), with a certain value. A the present epoch, there seems to be about three times as much vacuum/dark energy as there is "dark matter" and about fifteen or twenty times as much dark energy as there is visible matter. This concentration of dark energy poses two very serious puzzles, but neither of them is at all suggestive of a breakdown of quantum mechanics.



        The first problem, mentioned in the question, is the "hierarchy" problem. There is no quantum mechanical prediction for the absolute energy density of vacuum. However, it is possible to make some very crude "guesstimates" about this quantity. We know that some new fundamental physics must take over at the Planck energy scale $E_P$, where gravitational interactions are in the deeply quantum regime. We may therefore guess that the vacuum energy density is proportional to $E_P^4$. (This is certainly not a prediction of quantum mechanics though. Strictly, according to quantum field theory, without including gravity, the energy of the vacuum is unobservable and therefore not even well defined.) The problem with the $propto E_P^4$ guess for the vacuum energy is that it is off by 275 nepers or so. But that does not falsify quantum mechanics, since our guess was not based on rigorous quantum theory anyway.



        The other puzzle with the vacuum energy density is that its value at the present cosmological epoch is pretty close to the energy density of matter in the universe, even though there is no a priori reason why the two should be related. The fact that the (light plus dark) matter and dark energy densities are relatively close suggests that what we are observing as apparent vacuum energy might very well be something else entirely anyway. But what that "something else" might be, no one knows.






        share|cite|improve this answer









        $endgroup$

















          4












          $begingroup$

          Experimentally, based on cosmological observations, there seems to be a vacuum energy (the "dark energy" component of the cosmological energy budget), with a certain value. A the present epoch, there seems to be about three times as much vacuum/dark energy as there is "dark matter" and about fifteen or twenty times as much dark energy as there is visible matter. This concentration of dark energy poses two very serious puzzles, but neither of them is at all suggestive of a breakdown of quantum mechanics.



          The first problem, mentioned in the question, is the "hierarchy" problem. There is no quantum mechanical prediction for the absolute energy density of vacuum. However, it is possible to make some very crude "guesstimates" about this quantity. We know that some new fundamental physics must take over at the Planck energy scale $E_P$, where gravitational interactions are in the deeply quantum regime. We may therefore guess that the vacuum energy density is proportional to $E_P^4$. (This is certainly not a prediction of quantum mechanics though. Strictly, according to quantum field theory, without including gravity, the energy of the vacuum is unobservable and therefore not even well defined.) The problem with the $propto E_P^4$ guess for the vacuum energy is that it is off by 275 nepers or so. But that does not falsify quantum mechanics, since our guess was not based on rigorous quantum theory anyway.



          The other puzzle with the vacuum energy density is that its value at the present cosmological epoch is pretty close to the energy density of matter in the universe, even though there is no a priori reason why the two should be related. The fact that the (light plus dark) matter and dark energy densities are relatively close suggests that what we are observing as apparent vacuum energy might very well be something else entirely anyway. But what that "something else" might be, no one knows.






          share|cite|improve this answer









          $endgroup$















            4












            4








            4





            $begingroup$

            Experimentally, based on cosmological observations, there seems to be a vacuum energy (the "dark energy" component of the cosmological energy budget), with a certain value. A the present epoch, there seems to be about three times as much vacuum/dark energy as there is "dark matter" and about fifteen or twenty times as much dark energy as there is visible matter. This concentration of dark energy poses two very serious puzzles, but neither of them is at all suggestive of a breakdown of quantum mechanics.



            The first problem, mentioned in the question, is the "hierarchy" problem. There is no quantum mechanical prediction for the absolute energy density of vacuum. However, it is possible to make some very crude "guesstimates" about this quantity. We know that some new fundamental physics must take over at the Planck energy scale $E_P$, where gravitational interactions are in the deeply quantum regime. We may therefore guess that the vacuum energy density is proportional to $E_P^4$. (This is certainly not a prediction of quantum mechanics though. Strictly, according to quantum field theory, without including gravity, the energy of the vacuum is unobservable and therefore not even well defined.) The problem with the $propto E_P^4$ guess for the vacuum energy is that it is off by 275 nepers or so. But that does not falsify quantum mechanics, since our guess was not based on rigorous quantum theory anyway.



            The other puzzle with the vacuum energy density is that its value at the present cosmological epoch is pretty close to the energy density of matter in the universe, even though there is no a priori reason why the two should be related. The fact that the (light plus dark) matter and dark energy densities are relatively close suggests that what we are observing as apparent vacuum energy might very well be something else entirely anyway. But what that "something else" might be, no one knows.






            share|cite|improve this answer









            $endgroup$



            Experimentally, based on cosmological observations, there seems to be a vacuum energy (the "dark energy" component of the cosmological energy budget), with a certain value. A the present epoch, there seems to be about three times as much vacuum/dark energy as there is "dark matter" and about fifteen or twenty times as much dark energy as there is visible matter. This concentration of dark energy poses two very serious puzzles, but neither of them is at all suggestive of a breakdown of quantum mechanics.



            The first problem, mentioned in the question, is the "hierarchy" problem. There is no quantum mechanical prediction for the absolute energy density of vacuum. However, it is possible to make some very crude "guesstimates" about this quantity. We know that some new fundamental physics must take over at the Planck energy scale $E_P$, where gravitational interactions are in the deeply quantum regime. We may therefore guess that the vacuum energy density is proportional to $E_P^4$. (This is certainly not a prediction of quantum mechanics though. Strictly, according to quantum field theory, without including gravity, the energy of the vacuum is unobservable and therefore not even well defined.) The problem with the $propto E_P^4$ guess for the vacuum energy is that it is off by 275 nepers or so. But that does not falsify quantum mechanics, since our guess was not based on rigorous quantum theory anyway.



            The other puzzle with the vacuum energy density is that its value at the present cosmological epoch is pretty close to the energy density of matter in the universe, even though there is no a priori reason why the two should be related. The fact that the (light plus dark) matter and dark energy densities are relatively close suggests that what we are observing as apparent vacuum energy might very well be something else entirely anyway. But what that "something else" might be, no one knows.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 hours ago









            BuzzBuzz

            3,45131625




            3,45131625





















                2












                $begingroup$

                "Quantum mechanics" is actually a very general, broad theory that "really", at least working from many more modern understandings of the topic, is about information, and more specifically, it is a language for writing theories that describe (in some way) physics in which information content is limited, just as relativity is actually a theory of space and time in which information propagation speed is limited. And moreover, that the information is limited in such a way that there are trade-offs between information determining various physical parameters of a system, and not a simplistic "pixelization". That is, in effect, what the "true" meaning of Planck's constant $hbar$, and the fact that $hbar > 0$, means. Check out Scott Aaronson's page here for the idea of quantum mechanics as a language for writing theories, instead of per se a theory in its own right:



                https://www.scottaaronson.com/democritus/lec9.html



                though it doesn't specifically touch on the "information limit" notion, for that, try:



                https://iopscience.iop.org/article/10.1088/0143-0807/36/1/015010



                e.g. section 3.8, mentions the idea of QM as an information-limited theory, at least in touching, though doesn't quite go about it in the same way as I had worked it out.



                The way then to "falsify" quantum mechanics would be to show an instance where its informational limits are violated, e.g. if someone finds a way to create a particle that has position and momentum (or another pair of incompatible physical parameters) more precisely defined than Heisenberg's limit allows. Merely finding a failure of certain theories built on it (e.g. "quantum field theories" - QFTs) to account for a cosmological parameter's value which is already going to be well in the range of those limits is not going to necessarily falsify QM, as another theory written in its language might still work and be able to account for that result, even spectacularly. It will simply falsify that particular theory built using it, namely Standard Model QFTs. (Whether QFTs entirely are out, at at least a fundamental level, is disputable, but the SM is at least guaranteed to have something wrong with it.)






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  "Quantum mechanics" is actually a very general, broad theory that "really", at least working from many more modern understandings of the topic, is about information, and more specifically, it is a language for writing theories that describe (in some way) physics in which information content is limited, just as relativity is actually a theory of space and time in which information propagation speed is limited. And moreover, that the information is limited in such a way that there are trade-offs between information determining various physical parameters of a system, and not a simplistic "pixelization". That is, in effect, what the "true" meaning of Planck's constant $hbar$, and the fact that $hbar > 0$, means. Check out Scott Aaronson's page here for the idea of quantum mechanics as a language for writing theories, instead of per se a theory in its own right:



                  https://www.scottaaronson.com/democritus/lec9.html



                  though it doesn't specifically touch on the "information limit" notion, for that, try:



                  https://iopscience.iop.org/article/10.1088/0143-0807/36/1/015010



                  e.g. section 3.8, mentions the idea of QM as an information-limited theory, at least in touching, though doesn't quite go about it in the same way as I had worked it out.



                  The way then to "falsify" quantum mechanics would be to show an instance where its informational limits are violated, e.g. if someone finds a way to create a particle that has position and momentum (or another pair of incompatible physical parameters) more precisely defined than Heisenberg's limit allows. Merely finding a failure of certain theories built on it (e.g. "quantum field theories" - QFTs) to account for a cosmological parameter's value which is already going to be well in the range of those limits is not going to necessarily falsify QM, as another theory written in its language might still work and be able to account for that result, even spectacularly. It will simply falsify that particular theory built using it, namely Standard Model QFTs. (Whether QFTs entirely are out, at at least a fundamental level, is disputable, but the SM is at least guaranteed to have something wrong with it.)






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    "Quantum mechanics" is actually a very general, broad theory that "really", at least working from many more modern understandings of the topic, is about information, and more specifically, it is a language for writing theories that describe (in some way) physics in which information content is limited, just as relativity is actually a theory of space and time in which information propagation speed is limited. And moreover, that the information is limited in such a way that there are trade-offs between information determining various physical parameters of a system, and not a simplistic "pixelization". That is, in effect, what the "true" meaning of Planck's constant $hbar$, and the fact that $hbar > 0$, means. Check out Scott Aaronson's page here for the idea of quantum mechanics as a language for writing theories, instead of per se a theory in its own right:



                    https://www.scottaaronson.com/democritus/lec9.html



                    though it doesn't specifically touch on the "information limit" notion, for that, try:



                    https://iopscience.iop.org/article/10.1088/0143-0807/36/1/015010



                    e.g. section 3.8, mentions the idea of QM as an information-limited theory, at least in touching, though doesn't quite go about it in the same way as I had worked it out.



                    The way then to "falsify" quantum mechanics would be to show an instance where its informational limits are violated, e.g. if someone finds a way to create a particle that has position and momentum (or another pair of incompatible physical parameters) more precisely defined than Heisenberg's limit allows. Merely finding a failure of certain theories built on it (e.g. "quantum field theories" - QFTs) to account for a cosmological parameter's value which is already going to be well in the range of those limits is not going to necessarily falsify QM, as another theory written in its language might still work and be able to account for that result, even spectacularly. It will simply falsify that particular theory built using it, namely Standard Model QFTs. (Whether QFTs entirely are out, at at least a fundamental level, is disputable, but the SM is at least guaranteed to have something wrong with it.)






                    share|cite|improve this answer









                    $endgroup$



                    "Quantum mechanics" is actually a very general, broad theory that "really", at least working from many more modern understandings of the topic, is about information, and more specifically, it is a language for writing theories that describe (in some way) physics in which information content is limited, just as relativity is actually a theory of space and time in which information propagation speed is limited. And moreover, that the information is limited in such a way that there are trade-offs between information determining various physical parameters of a system, and not a simplistic "pixelization". That is, in effect, what the "true" meaning of Planck's constant $hbar$, and the fact that $hbar > 0$, means. Check out Scott Aaronson's page here for the idea of quantum mechanics as a language for writing theories, instead of per se a theory in its own right:



                    https://www.scottaaronson.com/democritus/lec9.html



                    though it doesn't specifically touch on the "information limit" notion, for that, try:



                    https://iopscience.iop.org/article/10.1088/0143-0807/36/1/015010



                    e.g. section 3.8, mentions the idea of QM as an information-limited theory, at least in touching, though doesn't quite go about it in the same way as I had worked it out.



                    The way then to "falsify" quantum mechanics would be to show an instance where its informational limits are violated, e.g. if someone finds a way to create a particle that has position and momentum (or another pair of incompatible physical parameters) more precisely defined than Heisenberg's limit allows. Merely finding a failure of certain theories built on it (e.g. "quantum field theories" - QFTs) to account for a cosmological parameter's value which is already going to be well in the range of those limits is not going to necessarily falsify QM, as another theory written in its language might still work and be able to account for that result, even spectacularly. It will simply falsify that particular theory built using it, namely Standard Model QFTs. (Whether QFTs entirely are out, at at least a fundamental level, is disputable, but the SM is at least guaranteed to have something wrong with it.)







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    The_SympathizerThe_Sympathizer

                    4,034923




                    4,034923





















                        1












                        $begingroup$

                        Our back of the envelope prediction for the order of magnitude of the vacuum energy is indeed very wrong! However, keep in mind that



                        1. It is possible to precisely fine-tune free-parameters of the theory to match the measurement. This is achieved through a delicate cancellation between so-called tree-level parameters and corrections. When we make the back of the envelope calculation, we implicitly assume that such cancellations don't occur.


                        2. This isn't a test of quantum mechanics per se; but a test of a particular theory that obeys a combination of quantum mechanics and special relatively. Such theories are called quantum field theories. There are many such theories as we may introduce lots of types of fields and let them interact in lots of different ways.


                        So, quantum mechanics isn't falsified as measurements of the vacuum energy don't directly test it. And even the theories that the measurements do test aren't falsified because we can find extremely fine-tuned combinations of parameters that match observations.



                        The fact that fine-tuning is required is considered problematic and arguably means that our theories might be somewhat implausible; read about naturalness/fine-tuning in physics for more information.






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          Our back of the envelope prediction for the order of magnitude of the vacuum energy is indeed very wrong! However, keep in mind that



                          1. It is possible to precisely fine-tune free-parameters of the theory to match the measurement. This is achieved through a delicate cancellation between so-called tree-level parameters and corrections. When we make the back of the envelope calculation, we implicitly assume that such cancellations don't occur.


                          2. This isn't a test of quantum mechanics per se; but a test of a particular theory that obeys a combination of quantum mechanics and special relatively. Such theories are called quantum field theories. There are many such theories as we may introduce lots of types of fields and let them interact in lots of different ways.


                          So, quantum mechanics isn't falsified as measurements of the vacuum energy don't directly test it. And even the theories that the measurements do test aren't falsified because we can find extremely fine-tuned combinations of parameters that match observations.



                          The fact that fine-tuning is required is considered problematic and arguably means that our theories might be somewhat implausible; read about naturalness/fine-tuning in physics for more information.






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            Our back of the envelope prediction for the order of magnitude of the vacuum energy is indeed very wrong! However, keep in mind that



                            1. It is possible to precisely fine-tune free-parameters of the theory to match the measurement. This is achieved through a delicate cancellation between so-called tree-level parameters and corrections. When we make the back of the envelope calculation, we implicitly assume that such cancellations don't occur.


                            2. This isn't a test of quantum mechanics per se; but a test of a particular theory that obeys a combination of quantum mechanics and special relatively. Such theories are called quantum field theories. There are many such theories as we may introduce lots of types of fields and let them interact in lots of different ways.


                            So, quantum mechanics isn't falsified as measurements of the vacuum energy don't directly test it. And even the theories that the measurements do test aren't falsified because we can find extremely fine-tuned combinations of parameters that match observations.



                            The fact that fine-tuning is required is considered problematic and arguably means that our theories might be somewhat implausible; read about naturalness/fine-tuning in physics for more information.






                            share|cite|improve this answer









                            $endgroup$



                            Our back of the envelope prediction for the order of magnitude of the vacuum energy is indeed very wrong! However, keep in mind that



                            1. It is possible to precisely fine-tune free-parameters of the theory to match the measurement. This is achieved through a delicate cancellation between so-called tree-level parameters and corrections. When we make the back of the envelope calculation, we implicitly assume that such cancellations don't occur.


                            2. This isn't a test of quantum mechanics per se; but a test of a particular theory that obeys a combination of quantum mechanics and special relatively. Such theories are called quantum field theories. There are many such theories as we may introduce lots of types of fields and let them interact in lots of different ways.


                            So, quantum mechanics isn't falsified as measurements of the vacuum energy don't directly test it. And even the theories that the measurements do test aren't falsified because we can find extremely fine-tuned combinations of parameters that match observations.



                            The fact that fine-tuning is required is considered problematic and arguably means that our theories might be somewhat implausible; read about naturalness/fine-tuning in physics for more information.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 1 hour ago









                            innisfreeinnisfree

                            11.4k32961




                            11.4k32961




















                                sidharth chhabra is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                sidharth chhabra is a new contributor. Be nice, and check out our Code of Conduct.












                                sidharth chhabra is a new contributor. Be nice, and check out our Code of Conduct.











                                sidharth chhabra is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467939%2fstrong-empirical-falsification-of-quantum-mechanics-based-on-vacuum-energy-densi%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Францішак Багушэвіч Змест Сям'я | Біяграфія | Творчасць | Мова Багушэвіча | Ацэнкі дзейнасці | Цікавыя факты | Спадчына | Выбраная бібліяграфія | Ушанаванне памяці | У філатэліі | Зноскі | Літаратура | Спасылкі | НавігацыяЛяхоўскі У. Рупіўся дзеля Бога і людзей: Жыццёвы шлях Лявона Вітан-Дубейкаўскага // Вольскі і Памідораў з песняй пра немца Адвакат, паэт, народны заступнік Ашмянскі веснікВ Минске появится площадь Богушевича и улица Сырокомли, Белорусская деловая газета, 19 июля 2001 г.Айцец беларускай нацыянальнай ідэі паўстаў у бронзе Сяргей Аляксандравіч Адашкевіч (1918, Мінск). 80-я гады. Бюст «Францішак Багушэвіч».Яўген Мікалаевіч Ціхановіч. «Партрэт Францішка Багушэвіча»Мікола Мікалаевіч Купава. «Партрэт зачынальніка новай беларускай літаратуры Францішка Багушэвіча»Уладзімір Іванавіч Мелехаў. На помніку «Змагарам за родную мову» Барэльеф «Францішак Багушэвіч»Памяць пра Багушэвіча на Віленшчыне Страчаная сталіца. Беларускія шыльды на вуліцах Вільні«Krynica». Ideologia i przywódcy białoruskiego katolicyzmuФранцішак БагушэвічТворы на knihi.comТворы Францішка Багушэвіча на bellib.byСодаль Уладзімір. Францішак Багушэвіч на Лідчыне;Луцкевіч Антон. Жыцьцё і творчасьць Фр. Багушэвіча ў успамінах ягоных сучасьнікаў // Запісы Беларускага Навуковага таварыства. Вільня, 1938. Сшытак 1. С. 16-34.Большая российская1188761710000 0000 5537 633Xn9209310021619551927869394п

                                На ростанях Змест Гісторыя напісання | Месца дзеяння | Час дзеяння | Назва | Праблематыка трылогіі | Аўтабіяграфічнасць | Трылогія ў тэатры і кіно | Пераклады | У культуры | Зноскі Літаратура | Спасылкі | НавігацыяДагледжаная версіяправерана1 зменаДагледжаная версіяправерана1 зменаАкадэмік МІЦКЕВІЧ Канстанцін Міхайлавіч (Якуб Колас) Прадмова М. І. Мушынскага, доктара філалагічных навук, члена-карэспандэнта Нацыянальнай акадэміі навук Рэспублікі Беларусь, прафесараНашаніўцы ў трылогіі Якуба Коласа «На ростанях»: вобразы і прататыпы125 лет Янке МавруКнижно-документальная выставка к 125-летию со дня рождения Якуба Коласа (1882—1956)Колас Якуб. Новая зямля (паэма), На ростанях (трылогія). Сулкоўскі Уладзімір. Радзіма Якуба Коласа (серыял жывапісных палотнаў)Вокладка кнігіІлюстрацыя М. С. БасалыгіНа ростаняхАўдыёверсія трылогііВ. Жолтак У Люсiнскай школе 1959

                                Беларусь Змест Назва Гісторыя Геаграфія Сімволіка Дзяржаўны лад Палітычныя партыі Міжнароднае становішча і знешняя палітыка Адміністрацыйны падзел Насельніцтва Эканоміка Культура і грамадства Сацыяльная сфера Узброеныя сілы Заўвагі Літаратура Спасылкі НавігацыяHGЯOiТоп-2011 г. (па версіі ej.by)Топ-2013 г. (па версіі ej.by)Топ-2016 г. (па версіі ej.by)Топ-2017 г. (па версіі ej.by)Нацыянальны статыстычны камітэт Рэспублікі БеларусьШчыльнасць насельніцтва па краінахhttp://naviny.by/rubrics/society/2011/09/16/ic_articles_116_175144/А. Калечыц, У. Ксяндзоў. Спробы засялення краю неандэртальскім чалавекам.І ў Менску былі мамантыА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіГ. Штыхаў. Балты і славяне ў VI—VIII стст.М. Клімаў. Полацкае княства ў IX—XI стст.Г. Штыхаў, В. Ляўко. Палітычная гісторыя Полацкай зямліГ. Штыхаў. Дзяржаўны лад у землях-княствахГ. Штыхаў. Дзяржаўны лад у землях-княствахБеларускія землі ў складзе Вялікага Княства ЛітоўскагаЛюблінская унія 1569 г."The Early Stages of Independence"Zapomniane prawdy25 гадоў таму было аб'яўлена, што Язэп Пілсудскі — беларус (фота)Наша вадаДакументы ЧАЭС: Забруджванне тэрыторыі Беларусі « ЧАЭС Зона адчужэнняСведения о политических партиях, зарегистрированных в Республике Беларусь // Министерство юстиции Республики БеларусьСтатыстычны бюлетэнь „Полаўзроставая структура насельніцтва Рэспублікі Беларусь на 1 студзеня 2012 года і сярэднегадовая колькасць насельніцтва за 2011 год“Индекс человеческого развития Беларуси — не было бы нижеБеларусь занимает первое место в СНГ по индексу развития с учетом гендерного факцёраНацыянальны статыстычны камітэт Рэспублікі БеларусьКанстытуцыя РБ. Артыкул 17Трансфармацыйныя задачы БеларусіВыйсце з крызісу — далейшае рэфармаванне Беларускі рубель — сусветны лідар па дэвальвацыяхПра змену коштаў у кастрычніку 2011 г.Бядней за беларусаў у СНД толькі таджыкіСярэдні заробак у верасні дасягнуў 2,26 мільёна рублёўЭканомікаГаласуем за ТОП-100 беларускай прозыСучасныя беларускія мастакіАрхитектура Беларуси BELARUS.BYА. Каханоўскі. Культура Беларусі ўсярэдзіне XVII—XVIII ст.Анталогія беларускай народнай песні, гуказапісы спеваўБеларускія Музычныя IнструментыБеларускі рок, які мы страцілі. Топ-10 гуртоў«Мясцовы час» — нязгаслая легенда беларускай рок-музыкіСЯРГЕЙ БУДКІН. МЫ НЯ ЗНАЕМ СВАЁЙ МУЗЫКІМ. А. Каладзінскі. НАРОДНЫ ТЭАТРМагнацкія культурныя цэнтрыПублічная дыскусія «Беларуская новая пьеса: без беларускай мовы ці беларуская?»Беларускія драматургі па-ранейшаму лепш ставяцца за мяжой, чым на радзіме«Працэс незалежнага кіно пайшоў, і дзяржаву турбуе яго непадкантрольнасць»Беларускія філосафы ў пошуках прасторыВсе идём в библиотекуАрхіваванаАб Нацыянальнай праграме даследавання і выкарыстання касмічнай прасторы ў мірных мэтах на 2008—2012 гадыУ космас — разам.У суседнім з Барысаўскім раёне пабудуюць Камандна-вымяральны пунктСвяты і абрады беларусаў«Мірныя бульбашы з малой краіны» — 5 непраўдзівых стэрэатыпаў пра БеларусьМ. Раманюк. Беларускае народнае адзеннеУ Беларусі скарачаецца колькасць злачынстваўЛукашэнка незадаволены мінскімі ўладамі Крадзяжы складаюць у Мінску каля 70% злачынстваў Узровень злачыннасці ў Мінскай вобласці — адзін з самых высокіх у краіне Генпракуратура аналізуе стан са злачыннасцю ў Беларусі па каэфіцыенце злачыннасці У Беларусі стабілізавалася крымінагеннае становішча, лічыць генпракурорЗамежнікі сталі здзяйсняць у Беларусі больш злачынстваўМУС Беларусі турбуе рост рэцыдыўнай злачыннасціЯ з ЖЭСа. Дазволіце вас абкрасці! Рэйтынг усіх службаў і падраздзяленняў ГУУС Мінгарвыканкама вырасАб КДБ РБГісторыя Аператыўна-аналітычнага цэнтра РБГісторыя ДКФРТаможняagentura.ruБеларусьBelarus.by — Афіцыйны сайт Рэспублікі БеларусьСайт урада БеларусіRadzima.org — Збор архітэктурных помнікаў, гісторыя Беларусі«Глобус Беларуси»Гербы и флаги БеларусиАсаблівасці каменнага веку на БеларусіА. Калечыц, У. Ксяндзоў. Старажытны каменны век (палеаліт). Першапачатковае засяленне тэрыторыіУ. Ксяндзоў. Сярэдні каменны век (мезаліт). Засяленне краю плямёнамі паляўнічых, рыбакоў і збіральнікаўА. Калечыц, М. Чарняўскі. Плямёны на тэрыторыі Беларусі ў новым каменным веку (неаліце)А. Калечыц, У. Ксяндзоў, М. Чарняўскі. Гаспадарчыя заняткі ў каменным векуЭ. Зайкоўскі. Духоўная культура ў каменным векуАсаблівасці бронзавага веку на БеларусіФарміраванне супольнасцей ранняга перыяду бронзавага векуФотографии БеларусиРоля беларускіх зямель ва ўтварэнні і ўмацаванні ВКЛВ. Фадзеева. З гісторыі развіцця беларускай народнай вышыўкіDMOZGran catalanaБольшая российскаяBritannica (анлайн)Швейцарскі гістарычны15325917611952699xDA123282154079143-90000 0001 2171 2080n9112870100577502ge128882171858027501086026362074122714179пппппп